A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
- Kang, Jun Young & Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom, 2014. "Comparative economic analysis of gas turbine-based power generation and combined heat and power systems using biogas fuel," Energy, Elsevier, vol. 67(C), pages 309-318.
- Sunhee Kim & Taehong Sung & Kyung Chun Kim, 2017. "Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants," Energies, MDPI, vol. 10(3), pages 1-22, February.
- Huopana, Tuomas & Song, Han & Kolehmainen, Mikko & Niska, Harri, 2013. "A regional model for sustainable biogas electricity production: A case study from a Finnish province," Applied Energy, Elsevier, vol. 102(C), pages 676-686.
- Kanoglu, Mehmet & Dincer, Ibrahim & Rosen, Marc A., 2007. "Understanding energy and exergy efficiencies for improved energy management in power plants," Energy Policy, Elsevier, vol. 35(7), pages 3967-3978, July.
- Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
- Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2013. "Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 454-462.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Je-Lueng Shie & Wei-Sheng Yang & Yi-Ru Liau & Tian-Hui Liau & Hong-Ren Yang, 2021. "Subcritical Hydrothermal Co-Liquefaction of Process Rejects at a Wastepaper-Based Paper Mill with Waste Soybean Oil," Energies, MDPI, vol. 14(9), pages 1-14, April.
- Panupon Trairat & Sakda Somkun & Tanakorn Kaewchum & Tawat Suriwong & Pisit Maneechot & Teerapon Panpho & Wikarn Wansungnern & Sathit Banthuek & Bongkot Prasit & Tanongkiat Kiatsiriroat, 2023. "Grid Integration of Livestock Biogas Using Self-Excited Induction Generator and Spark-Ignition Engine," Energies, MDPI, vol. 16(13), pages 1-23, June.
- Mariam Gómez Sánchez & Yunesky Masip Macia & Alejandro Fernández Gil & Carlos Castro & Suleivys M. Nuñez González & Jacqueline Pedrera Yanes, 2020. "A Mathematical Model for the Optimization of Renewable Energy Systems," Mathematics, MDPI, vol. 9(1), pages 1-16, December.
- Derick Lima & Li Li & Gregory Appleby, 2024. "A Review of Renewable Energy Technologies in Municipal Wastewater Treatment Plants (WWTPs)," Energies, MDPI, vol. 17(23), pages 1-52, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
- Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
- You, Huailiang & Han, Jitian & Liu, Yang, 2019. "Performance assessment of a CCHP and multi-effect desalination system based on GT/ORC with inlet air precooling," Energy, Elsevier, vol. 185(C), pages 286-298.
- Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
- Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
- Teymoori Hamzehkolaei, Fatemeh & Amjady, Nima, 2018. "A techno-economic assessment for replacement of conventional fossil fuel based technologies in animal farms with biogas fueled CHP units," Renewable Energy, Elsevier, vol. 118(C), pages 602-614.
- Mohammadpour, Mohammadreza & Ashjaee, Mehdi & Houshfar, Ehsan, 2022. "Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments," Energy, Elsevier, vol. 261(PA).
- Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
- Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
- Axenbeck, Janna & Niebel, Thomas, 2021.
"Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence,"
23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world
238007, International Telecommunications Society (ITS).
- Axenbeck, Janna & Niebel, Thomas, 2021. "Climate protection potentials of digitalized production processes: Microeconometric evidence?," ZEW Discussion Papers 21-105, ZEW - Leibniz Centre for European Economic Research.
- Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence?," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242369, Verein für Socialpolitik / German Economic Association.
- Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
- Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
- Anna Barwińska Małajowicz & Miroslava Knapková & Krzysztof Szczotka & Miriam Martinkovičová & Radosław Pyrek, 2022. "Energy Efficiency Policies in Poland and Slovakia in the Context of Individual Well-Being," Energies, MDPI, vol. 16(1), pages 1-29, December.
- Karen Turner, 2013.
""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
- Turner, Karen, 2012. "'Rebound' effects from increased energy efficiency: a time to pause and reflect," Stirling Economics Discussion Papers 2012-15, University of Stirling, Division of Economics.
- Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
- Bernard, Jean-Thomas & Idoudi, Nadhem, 2003. "Demande d’énergie et changement de l’intensité énergétique du secteur manufacturier québécois de 1990 à 1998," L'Actualité Economique, Société Canadienne de Science Economique, vol. 79(4), pages 503-521, Décembre.
- Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
- Aviel Verbruggen, 2011. "A Turbo Drive for the Global Reduction of Energy-Related CO 2 Emissions," Sustainability, MDPI, vol. 3(4), pages 1-17, April.
- Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
- Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
More about this item
Keywords
biogas conversion; electricity generation; greenhouse gas reduction; sewage treatment; gas turbine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2424-:d:242480. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.