IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp770-787.html
   My bibliography  Save this article

Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy

Author

Listed:
  • Le, Si
  • Lee, Jui-Yuan
  • Chen, Cheng-Liang

Abstract

The world has been concentrating on waste heat recovery for several decades. The attention has recently been turned to waste energy in cold streams. This work focuses on the recovery of waste cold energy released from the Liquefied Natural Gas (LNG) regasification process, including pressure energy and thermal energy. A direct expansion configuration involving different steps of expansion and mass flow rate extraction at intermediate pressure levels is adopted in the mathematical models for pressure energy recovery. A direct-configuration organic Rankine cycle (ORC) is employed subsequently to recover residual cold energy. An equation of state for methane (the main component of LNG) is used to estimate the thermodynamic properties of LNG in a long-range phase transition of the regasification process. The modified Peng-Robinson (PR) and the Soave-Redlich-Kwong (SRK) equations of state are used to calculate thermodynamic properties of the ORC working fluids. All the models are developed and solved using MATLAB. By adopting propane as the ORC working fluid, the multistage expansion and thermal energy extraction can recover 215 kJ per kilogram of flowing LNG, which can generate 1.7 GWh annually for 1 kg/s LNG, with a payback period less than seven years.

Suggested Citation

  • Le, Si & Lee, Jui-Yuan & Chen, Cheng-Liang, 2018. "Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy," Energy, Elsevier, vol. 152(C), pages 770-787.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:770-787
    DOI: 10.1016/j.energy.2018.03.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Ramón Ferreiro & Carril, Jose Carbia & Gomez, Javier Romero & Gomez, Manuel Romero, 2016. "Combined cascaded Rankine and direct expander based power units using LNG (liquefied natural gas) cold as heat sink in LNG regasification," Energy, Elsevier, vol. 105(C), pages 16-24.
    2. Liu, Yanni & Guo, Kaihua, 2011. "A novel cryogenic power cycle for LNG cold energy recovery," Energy, Elsevier, vol. 36(5), pages 2828-2833.
    3. Taheri, M.H. & Mosaffa, A.H. & Farshi, L. Garousi, 2017. "Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle," Energy, Elsevier, vol. 125(C), pages 162-177.
    4. Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
    5. Lee, Sangick, 2017. "Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm," Energy, Elsevier, vol. 118(C), pages 776-782.
    6. Zhang, Na & Lior, Noam, 2006. "A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization," Energy, Elsevier, vol. 31(10), pages 1666-1679.
    7. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen Tian & Yingying Yue & Yuan Zhang & Bo Gu & Wenzhong Gao, 2020. "Multi-Objective Thermo-Economic Optimization of a Combined Organic Rankine Cycle (ORC) System Based on Waste Heat of Dual Fuel Marine Engine and LNG Cold Energy Recovery," Energies, MDPI, vol. 13(6), pages 1-23, March.
    2. Wang, Xiu & Zhao, Liang & Zhang, Lihui & Zhang, Menghui & Dong, Hui, 2019. "A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 187(C).
    3. Tan, Liping & Cai, Lei & Fu, Yidan & Zhou, Zining & Guan, Yanwen, 2023. "Numerical investigation of biomass and liquefied natural gas driven oxy-fuel combustion power system," Renewable Energy, Elsevier, vol. 208(C), pages 94-104.
    4. Ning, Jinghong & Sun, Zhili & Dong, Qiang & Liu, Xinghua, 2019. "Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG," Energy, Elsevier, vol. 172(C), pages 36-44.
    5. Yu, Haoshui & Kim, Donghoi & Gundersen, Truls, 2019. "A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy," Energy, Elsevier, vol. 167(C), pages 730-739.
    6. Ong, Chong Wei & Chen, Cheng-Liang, 2021. "Intensification, optimization and economic evaluations of the CO2-capturing oxy-combustion CO2 power system integrated with the utilization of liquefied natural gas cold energy," Energy, Elsevier, vol. 234(C).
    7. James T. Hinkley, 2021. "A New Zealand Perspective on Hydrogen as an Export Commodity: Timing of Market Development and an Energy Assessment of Hydrogen Carriers," Energies, MDPI, vol. 14(16), pages 1-15, August.
    8. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    9. Jamin Koo & Soung-Ryong Oh & Yeo-Ul Choi & Jae-Hoon Jung & Kyungtae Park, 2019. "Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship," Energies, MDPI, vol. 12(10), pages 1-17, May.
    10. Kang, Goanwoo & Im, Junyoung & Lee, Chul-Jin, 2024. "Operational strategy to minimize operating cost in LNG terminal using a comprehensive numerical boil-off gas model," Energy, Elsevier, vol. 296(C).
    11. Zheng, Siyang & Li, Chenghao & Zeng, Zhiyong, 2022. "Thermo-economic analysis, working fluids selection, and cost projection of a precooler-integrated dual-stage combined cycle (PIDSCC) system utilizing cold exergy of liquefied natural gas," Energy, Elsevier, vol. 238(PC).
    12. Sun, Zhixin & Huang, Yisheng & Tian, Na & Lin, Kui, 2023. "Performance improvement of ORC by breaking the barrier of ambient pressure," Energy, Elsevier, vol. 262(PA).
    13. Yadav, Sandeep & Seethamraju, Srinivas & Banerjee, Rangan, 2023. "Cold energy recovery from liquefied natural gas regasification process for data centre cooling and power generation," Energy, Elsevier, vol. 283(C).
    14. Al-Shannaq, Refat & Young, Brent & Farid, Mohammed, 2019. "Cold energy storage in a packed bed of novel graphite/PCM composite spheres," Energy, Elsevier, vol. 171(C), pages 296-305.
    15. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    16. Ong, Chong Wei & Chen, Cheng-Liang, 2019. "Technical and economic evaluation of seawater freezing desalination using liquefied natural gas," Energy, Elsevier, vol. 181(C), pages 429-439.
    17. Lee, Inkyu & You, Fengqi, 2019. "Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy," Applied Energy, Elsevier, vol. 242(C), pages 168-180.
    18. Güngör, Osman & Tozlu, Alperen & Arslantürk, Cihat & Özahi, Emrah, 2024. "District heating based on exhaust gas produced from end-of-life tires in Erzincan: Thermoeconomic analysis and optimization," Energy, Elsevier, vol. 294(C).
    19. Badami, Marco & Bruno, Juan Carlos & Coronas, Alberto & Fambri, Gabriele, 2018. "Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification," Energy, Elsevier, vol. 159(C), pages 373-384.
    20. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    21. Tafone, Alessio & Raj Thangavelu, Sundar & Morita, Shigenori & Romagnoli, Alessandro, 2023. "Design optimization of a novel cryo-polygeneration demonstrator developed in Singapore – Techno-economic feasibility study for a cooling dominated tropical climate," Applied Energy, Elsevier, vol. 330(PB).
    22. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Nakayama, Masayuki & Coronas, Alberto, 2019. "Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 176(C), pages 1020-1036.
    23. Zhang, Tongtong & She, Xiaohui & You, Zhanping & Zhao, Yanqi & Fan, Hongjun & Ding, Yulong, 2022. "Cryogenic thermoelectric generation using cold energy from a decoupled liquid air energy storage system for decentralised energy networks," Applied Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    2. Mohd Amin Abd Majid & Hamdan Haji Ya & Othman Mamat & Shuhaimi Mahadzir, 2019. "Techno Economic Evaluation of Cold Energy from Malaysian Liquefied Natural Gas Regasification Terminals," Energies, MDPI, vol. 12(23), pages 1-14, November.
    3. Badami, Marco & Bruno, Juan Carlos & Coronas, Alberto & Fambri, Gabriele, 2018. "Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification," Energy, Elsevier, vol. 159(C), pages 373-384.
    4. Liu, Yang & Han, Jitian & You, Huailiang, 2020. "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture," Energy, Elsevier, vol. 190(C).
    5. Sun, Zhixin & Lai, Jianpeng & Wang, Shujia & Wang, Tielong, 2018. "Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures," Energy, Elsevier, vol. 147(C), pages 688-700.
    6. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    7. Ghorbani, Bahram & Mahyari, Kimiya Borzoo & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2020. "Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery," Renewable Energy, Elsevier, vol. 148(C), pages 1227-1243.
    8. Jamin Koo & Soung-Ryong Oh & Yeo-Ul Choi & Jae-Hoon Jung & Kyungtae Park, 2019. "Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship," Energies, MDPI, vol. 12(10), pages 1-17, May.
    9. Bao, Junjiang & Lin, Yan & Zhang, Ruixiang & Zhang, Xiaopeng & Zhang, Ning & He, Gaohong, 2018. "Performance enhancement of two-stage condensation combined cycle for LNG cold energy recovery using zeotropic mixtures," Energy, Elsevier, vol. 157(C), pages 588-598.
    10. Yu, Haoshui & Kim, Donghoi & Gundersen, Truls, 2019. "A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy," Energy, Elsevier, vol. 167(C), pages 730-739.
    11. Choi, Hong Wone & Na, Sun-Ik & Hong, Sung Bin & Chung, Yoong & Kim, Dong Kyu & Kim, Min Soo, 2021. "Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size," Energy, Elsevier, vol. 217(C).
    12. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    13. Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
    14. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    15. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink," Energy, Elsevier, vol. 50(C), pages 513-522.
    16. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    17. Yoonho, Lee, 2019. "LNG-FSRU cold energy recovery regasification using a zeotropic mixture of ethane and propane," Energy, Elsevier, vol. 173(C), pages 857-869.
    18. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    19. Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.
    20. Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:770-787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.