IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v214y2021ics0360544220320144.html
   My bibliography  Save this article

Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas

Author

Listed:
  • Gordon, Jeffrey M.
  • Moses, Gilad
  • Katz, Eugene A.

Abstract

The regasification of liquefied natural gas from 111 K to ambient temperature represents a standard large-scale process that currently dissipates a worldwide total of ∼105 TWh/yr of cold energy to seawater. We consider the potential efficiency enhancement attainable by exploiting this nominally free cold energy to cool conventional silicon photovoltaics. Whether the temperature dependence of photovoltaic performance at ordinary operating conditions can be extrapolated to cryogenic temperatures has remained unexplored territory. In measuring the principal PV performance variables down to cryogenic temperatures, we show that such cooling can boost PV efficiency by close to 80% relative.

Suggested Citation

  • Gordon, Jeffrey M. & Moses, Gilad & Katz, Eugene A., 2021. "Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas," Energy, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320144
    DOI: 10.1016/j.energy.2020.118907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320144
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Dae Yeon & Sung, Tae Hong & Kim, Kyung Chun, 2016. "Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system," Energy, Elsevier, vol. 105(C), pages 57-69.
    2. Koku, Oludolapo & Perry, Simon & Kim, Jin-Kuk, 2014. "Techno-economic evaluation for the heat integration of vaporisation cold energy in natural gas processing," Applied Energy, Elsevier, vol. 114(C), pages 250-261.
    3. Randeep Agarwal & Thomas J. Rainey & S. M. Ashrafur Rahman & Ted Steinberg & Robert K. Perrons & Richard J. Brown, 2017. "LNG Regasification Terminals: The Role of Geography and Meteorology on Technology Choices," Energies, MDPI, vol. 10(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pospíšil, Jiří & Charvát, Pavel & Arsenyeva, Olga & Klimeš, Lubomír & Špiláček, Michal & Klemeš, Jiří Jaromír, 2019. "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 1-15.
    2. Zheng, Siyang & Li, Chenghao & Zeng, Zhiyong, 2022. "Thermo-economic analysis, working fluids selection, and cost projection of a precooler-integrated dual-stage combined cycle (PIDSCC) system utilizing cold exergy of liquefied natural gas," Energy, Elsevier, vol. 238(PC).
    3. Filip Lisowski & Edward Lisowski, 2022. "Influence of Longitudinal Fin Tubes Arrangement in LNG Ambient Air Vaporizers on the Wind Load," Energies, MDPI, vol. 15(2), pages 1-11, January.
    4. Liew, Peng Yen & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2014. "A retrofit framework for Total Site heat recovery systems," Applied Energy, Elsevier, vol. 135(C), pages 778-790.
    5. Sermsuk, Maytungkorn & Sukjai, Yanin & Wiboonrat, Montri & Kiatkittipong, Kunlanan, 2022. "Feasibility study of a combined system of electricity generation and cooling from liquefied natural gas to reduce the electricity cost of data centres," Energy, Elsevier, vol. 254(PA).
    6. Rashidi, Saman & Kashefi, Mohammad Hossein & Kim, Kyung Chun & Samimi-Abianeh, Omid, 2019. "Potentials of porous materials for energy management in heat exchangers – A comprehensive review," Applied Energy, Elsevier, vol. 243(C), pages 206-232.
    7. Jadhav, Prakash H. & Gnanasekaran, N. & Mobedi, Moghtada, 2023. "Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger," Energy, Elsevier, vol. 263(PA).
    8. Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2021. "Techno-economic and life cycle greenhouse gas emissions assessment of liquefied natural gas supply chain in China," Energy, Elsevier, vol. 224(C).
    9. Badami, Marco & Bruno, Juan Carlos & Coronas, Alberto & Fambri, Gabriele, 2018. "Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification," Energy, Elsevier, vol. 159(C), pages 373-384.
    10. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).
    11. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    12. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    13. Agnieszka Magdalena Kalbarczyk-Jedynak & Magdalena Ślączka-Wilk & Magdalena Kaup & Wojciech Ślączka & Dorota Łozowicka, 2022. "Assessment of Explosion Safety Status within the Area of an LNG Terminal in a Function of Selected Parameters," Energies, MDPI, vol. 15(11), pages 1-34, May.
    14. Daniarta, Sindu & Imre, Attila R. & Kolasiński, Piotr, 2022. "Thermodynamic efficiency of subcritical and transcritical power cycles utilizing selected ACZ working fluids," Energy, Elsevier, vol. 254(PA).
    15. Peters, Toby & Sayin, Leyla, 2022. "The Cold Economy," ADBI Working Papers 1326, Asian Development Bank Institute.
    16. Markéta Mikolajková-Alifov & Frank Pettersson & Margareta Björklund-Sänkiaho & Henrik Saxén, 2019. "A Model of Optimal Gas Supply to a Set of Distributed Consumers," Energies, MDPI, vol. 12(3), pages 1-27, January.
    17. Maytungkorn Sermsuk & Yanin Sukjai & Montri Wiboonrat & Kunlanan Kiatkittipong, 2021. "Utilising Cold Energy from Liquefied Natural Gas (LNG) to Reduce the Electricity Cost of Data Centres," Energies, MDPI, vol. 14(19), pages 1-17, October.
    18. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2024. "Techno-economic assessment of integrated NH3-power co-production with CCS and energy storage in an LNG regasification terminal," Applied Energy, Elsevier, vol. 356(C).
    19. He, Tianbiao & Nair, Sajitha K. & Babu, Ponnivalavan & Linga, Praveen & Karimi, Iftekhar A., 2018. "A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy," Applied Energy, Elsevier, vol. 222(C), pages 13-24.
    20. Peters, Toby & Sayin, Leylan, 2022. "Future-Proofing Sustainable Cooling Demand," ADBI Working Papers 1316, Asian Development Bank Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:214:y:2021:i:c:s0360544220320144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.