A comparative study of optimal hybrid methods for wind power prediction in wind farm of Alberta, Canada
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2013.06.022
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ramirez-Rosado, Ignacio J. & Fernandez-Jimenez, L. Alfredo & Monteiro, Cláudio & Sousa, João & Bessa, Ricardo, 2009. "Comparison of two new short-term wind-power forecasting systems," Renewable Energy, Elsevier, vol. 34(7), pages 1848-1854.
- Peng, Huaiwu & Liu, Fangrui & Yang, Xiaofeng, 2013. "A hybrid strategy of short term wind power prediction," Renewable Energy, Elsevier, vol. 50(C), pages 590-595.
- Costa, Alexandre & Crespo, Antonio & Navarro, Jorge & Lizcano, Gil & Madsen, Henrik & Feitosa, Everaldo, 2008. "A review on the young history of the wind power short-term prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1725-1744, August.
- Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
- Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
- De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Error analysis of short term wind power prediction models," Applied Energy, Elsevier, vol. 88(4), pages 1298-1311, April.
- Castellini, H. & Romanelli, L., 2004. "Applications of recurrence quantified analysis to study the dynamics of chaotic chemical reaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 301-307.
- Bigdeli, N. & Afshar, K., 2009. "Chaotic behavior of price in the power markets with pay-as-bid payment mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2560-2569.
- Kusiak, Andrew & Li, Wenyan, 2010. "Short-term prediction of wind power with a clustering approach," Renewable Energy, Elsevier, vol. 35(10), pages 2362-2369.
- Bigdeli, N. & Afshar, K., 2009. "Characterization of Iran electricity market indices with pay-as-bid payment mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1577-1592.
- Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
- Facchini, Angelo & Rubino, Alessandro & Caldarelli, Guido & Di Liddo, Giuseppe, 2019. "Changes to Gate Closure and its impact on wholesale electricity prices: The case of the UK," Energy Policy, Elsevier, vol. 125(C), pages 110-121.
- Xiu, Chunbo & Wang, Tiantian & Tian, Meng & Li, Yanqing & Cheng, Yi, 2014. "Short-term prediction method of wind speed series based on fractal interpolation," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 89-97.
- Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
- Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren & Liu, Jizhen, 2017. "Measurement and statistical analysis of wind speed intermittency," Energy, Elsevier, vol. 118(C), pages 632-643.
- Mohammadi, Kasra & Shamshirband, Shahaboddin & Yee, Por Lip & Petković, Dalibor & Zamani, Mazdak & Ch, Sudheer, 2015. "Predicting the wind power density based upon extreme learning machine," Energy, Elsevier, vol. 86(C), pages 232-239.
- Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
- Paulo Rotela Junior & Eugenio Fischetti & Victor G. Araújo & Rogério S. Peruchi & Giancarlo Aquila & Luiz Célio S. Rocha & Liviam S. Lacerda, 2019. "Wind Power Economic Feasibility under Uncertainty and the Application of ANN in Sensitivity Analysis," Energies, MDPI, vol. 12(12), pages 1-10, June.
- Osmani, Atif & Zhang, Jun, 2014. "Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties," Energy, Elsevier, vol. 70(C), pages 514-528.
- Ju-Yeol Ryu & Bora Lee & Sungho Park & Seonghyeon Hwang & Hyemin Park & Changhyeong Lee & Dohyeon Kwon, 2022. "Evaluation of Weather Information for Short-Term Wind Power Forecasting with Various Types of Models," Energies, MDPI, vol. 15(24), pages 1-14, December.
- Siddik Shakul Hameed & Ramesh Ramadoss & Kannadasan Raju & GM Shafiullah, 2022. "A Framework-Based Wind Forecasting to Assess Wind Potential with Improved Grey Wolf Optimization and Support Vector Regression," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
- Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
- Liu, Jinqiang & Wang, Xiaoru & Lu, Yun, 2017. "A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system," Renewable Energy, Elsevier, vol. 103(C), pages 620-629.
- Osório, G.J. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information," Renewable Energy, Elsevier, vol. 75(C), pages 301-307.
- Haque, Ashraf U. & Mandal, Paras & Kaye, Mary E. & Meng, Julian & Chang, Liuchen & Senjyu, Tomonobu, 2012. "A new strategy for predicting short-term wind speed using soft computing models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4563-4573.
- Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
- Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
- Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
- Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
- Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
- Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
- Qian Zhang & Kin Keung Lai & Dongxiao Niu & Qiang Wang & Xuebin Zhang, 2012. "A Fuzzy Group Forecasting Model Based on Least Squares Support Vector Machine (LS-SVM) for Short-Term Wind Power," Energies, MDPI, vol. 5(9), pages 1-18, September.
- Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
- Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
- De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods," Energy, Elsevier, vol. 36(7), pages 3968-3978.
- Lazić, Lazar & Pejanović, Goran & Živković, Momčilo & Ilić, Luka, 2014. "Improved wind forecasts for wind power generation using the Eta model and MOS (Model Output Statistics) method," Energy, Elsevier, vol. 73(C), pages 567-574.
- Anup Suryawanshi & Debraj Ghosh, 2015. "Wind speed prediction using spatio-temporal covariance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1435-1449, January.
More about this item
Keywords
Genetic algorithm (GA); Imperialist competitive algorithm (ICA); Neural networks; Particle swarm optimization (PSO); Recurrence plots; Time series analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:20-29. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.