IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1693-d116400.html
   My bibliography  Save this article

The Amalgamation of SVR and ANFIS Models with Synchronized Phasor Measurements for On-Line Voltage Stability Assessment

Author

Listed:
  • Mohammed Amroune

    (Department of Electrical Engineering, University of Ferhat Abbas Setif 1, Setif 19000, Algeria)

  • Ismail Musirin

    (Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia)

  • Tarek Bouktir

    (Department of Electrical Engineering, University of Ferhat Abbas Setif 1, Setif 19000, Algeria)

  • Muhammad Murtadha Othman

    (Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam 40450, Malaysia)

Abstract

This paper presents the application of support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS) models that are amalgamated with synchronized phasor measurements for on-line voltage stability assessment. As the performance of SVR model extremely depends on the good selection of its parameters, the recently developed ant lion optimizer (ALO) is adapted to seek for the SVR’s optimal parameters. In particular, the input vector of ALO-SVR and ANFIS soft computing models is provided in the form of voltage magnitudes provided by the phasor measurement units (PMUs). In order to investigate the effectiveness of ALO-SVR and ANFIS models towards performing the on-line voltage stability assessment, in-depth analyses on the results have been carried out on the IEEE 30-bus and IEEE 118-bus test systems considering different topologies and operating conditions. Two statistical performance criteria of root mean square error (RMSE) and correlation coefficient (R) were considered as metrics to further assess both of the modeling performances in contrast with the power flow equations. The results have demonstrated that the ALO-SVR model is able to predict the voltage stability margin with greater accuracy compared to the ANFIS model.

Suggested Citation

  • Mohammed Amroune & Ismail Musirin & Tarek Bouktir & Muhammad Murtadha Othman, 2017. "The Amalgamation of SVR and ANFIS Models with Synchronized Phasor Measurements for On-Line Voltage Stability Assessment," Energies, MDPI, vol. 10(11), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1693-:d:116400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Modarresi, Javad & Gholipour, Eskandar & Khodabakhshian, Amin, 2016. "A comprehensive review of the voltage stability indices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 1-12.
    2. Nazari-Heris, M. & Mohammadi-Ivatloo, B., 2015. "Application of heuristic algorithms to optimal PMU placement in electric power systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 214-228.
    3. Al-Shammari, Eiman Tamah & Keivani, Afram & Shamshirband, Shahaboddin & Mostafaeipour, Ali & Yee, Por Lip & Petković, Dalibor & Ch, Sudheer, 2016. "Prediction of heat load in district heating systems by Support Vector Machine with Firefly searching algorithm," Energy, Elsevier, vol. 95(C), pages 266-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oludamilare Bode Adewuyi & Komla A. Folly & David T. O. Oyedokun & Emmanuel Idowu Ogunwole, 2022. "Power System Voltage Stability Margin Estimation Using Adaptive Neuro-Fuzzy Inference System Enhanced with Particle Swarm Optimization," Sustainability, MDPI, vol. 14(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    2. Sharmistha Nandi & Sriparna Roy Ghatak & Parimal Acharjee & Fernando Lopes, 2023. "Non-Iterative, Unique, and Logical Formula-Based Technique to Determine Maximum Load Multiplier and Practical Load Multiplier for Both Transmission and Distribution Systems," Energies, MDPI, vol. 16(12), pages 1-19, June.
    3. Ting Yang & Feng Zhai & Jialin Liu & Meng Wang & Haibo Pen, 2018. "Self-organized cyber physical power system blockchain architecture and protocol," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
    4. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    5. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).
    6. M. Rambabu & G. V. Nagesh Kumar & S. Sivanagaraju, 2019. "Optimal Power Flow of Integrated Renewable Energy System using a Thyristor Controlled SeriesCompensator and a Grey-Wolf Algorithm," Energies, MDPI, vol. 12(11), pages 1-18, June.
    7. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    9. Yoshiaki Matsukawa & Masayuki Watanabe & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman, 2019. "Voltage Stability Index Calculation by Hybrid State Estimation Based on Multi Objective Optimal Phasor Measurement Unit Placement," Energies, MDPI, vol. 12(14), pages 1-19, July.
    10. Yude Yang & Jingru Long & Lizhen Yang & Shuqin Mo & Xuesong Wu, 2024. "Correction Control Model of L-Index Based on VSC-OPF and BLS Method," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    11. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    12. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    13. Chanuk Lee & Dong Eun Jung & Donghoon Lee & Kee Han Kim & Sung Lok Do, 2021. "Prediction Performance Analysis of Artificial Neural Network Model by Input Variable Combination for Residential Heating Loads," Energies, MDPI, vol. 14(3), pages 1-19, February.
    14. Bui, Dac-Khuong & Nguyen, Tuan Ngoc & Ngo, Tuan Duc & Nguyen-Xuan, H., 2020. "An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings," Energy, Elsevier, vol. 190(C).
    15. Gu, Jihao & Wang, Jin & Qi, Chengying & Min, Chunhua & Sundén, Bengt, 2018. "Medium-term heat load prediction for an existing residential building based on a wireless on-off control system," Energy, Elsevier, vol. 152(C), pages 709-718.
    16. Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
    17. Xue, Guixiang & Qi, Chengying & Li, Han & Kong, Xiangfei & Song, Jiancai, 2020. "Heating load prediction based on attention long short term memory: A case study of Xingtai," Energy, Elsevier, vol. 203(C).
    18. Xin Xiao & Qian Hu & Huansong Jiao & Yunfeng Wang & Ali Badiei, 2023. "Simulation and Machine Learning Investigation on Thermoregulation Performance of Phase Change Walls," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    19. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    20. Hamed Safayenikoo & Fatemeh Nejati & Moncef L. Nehdi, 2022. "Indirect Analysis of Concrete Slump Using Different Metaheuristic-Empowered Neural Processors," Sustainability, MDPI, vol. 14(16), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1693-:d:116400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.