IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1588-d516142.html
   My bibliography  Save this article

A Heuristic Algorithm for Combined Heat and Power System Operation Management

Author

Listed:
  • Muhammad Faisal Shehzad

    (Group for Research on Automatic Control Engineering, Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Mainak Dan

    (Interdisciplinary Graduate Programme, Nanyang Technological University Computational Intelligence Laboratory, Blk N4, B1a-02, Singapore 639798, Singapore)

  • Valerio Mariani

    (Group for Research on Automatic Control Engineering, Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Seshadhri Srinivasan

    (Berkeley Education Alliance for Research in Singapore, Singapore 138602, Singapore)

  • Davide Liuzza

    (Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00044 Rome, Italy)

  • Carmine Mongiello

    (Energy Technologies and Renewable Sources Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 80055 Portici, Italy)

  • Roberto Saraceno

    (AtenaTech srl, 00044 Rome, Italy)

  • Luigi Glielmo

    (Group for Research on Automatic Control Engineering, Department of Engineering, University of Sannio, Piazza Roma 21, 82100 Benevento, Italy)

Abstract

This paper presents a computationally efficient novel heuristic approach for solving the combined heat and power economic dispatch (CHP-ED) problem in residential buildings considering component interconnections. The proposed solution is meant as a substitute for the cutting-edge approaches, such as model predictive control, where the problem is a mixed-integer nonlinear program (MINLP), known to be computationally-intensive, and therefore requiring specialized hardware and sophisticated solvers, not suited for residential use. The proposed heuristic algorithm targets simple embedded hardware with limited computation and memory and, taking as inputs the hourly thermal and electrical demand estimated from daily load profiles, computes a dispatch of the energy vectors including the CHP. The main idea of the heuristic is to have a procedure that initially decomposes the three energy vectors’ requests: electrical, thermal, and hot water. Then, the latter are later combined and dispatched considering interconnection and operational constraints. The proposed algorithm is illustrated using series of simulations on a residential pilot with a nano-cogenerator unit and shows around 25–30% energy savings when compared with a meta-heuristic genetic algorithm approach.

Suggested Citation

  • Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1588-:d:516142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Batrancea Larissa & Rathnaswamy Malar Maran & Batrancea Ioan & Nichita Anca & Rus Mircea-Iosif & Tulai Horia & Fatacean Gheorghe & Masca Ema Speranta & Morar Ioan Dan, 2020. "Adjusted Net Savings of CEE and Baltic Nations in the Context of Sustainable Economic Growth: A Panel Data Analysis," JRFM, MDPI, vol. 13(10), pages 1-17, October.
    2. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    3. Vögelin, Philipp & Koch, Ben & Georges, Gil & Boulouchos, Konstatinos, 2017. "Heuristic approach for the economic optimisation of combined heat and power (CHP) plants: Operating strategy, heat storage and power," Energy, Elsevier, vol. 121(C), pages 66-77.
    4. Yokoyama, Ryohei & Shinano, Yuji & Wakayama, Yuki & Wakui, Tetsuya, 2019. "Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method," Energy, Elsevier, vol. 181(C), pages 782-792.
    5. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    6. Batrancea Ioan & Rathnaswamy Malar Kumaran & Batrancea Larissa & Nichita Anca & Gaban Lucian & Fatacean Gheorghe & Tulai Horia & Bircea Ioan & Rus Mircea-Iosif, 2020. "A Panel Data Analysis on Sustainable Economic Growth in India, Brazil, and Romania," JRFM, MDPI, vol. 13(8), pages 1-19, August.
    7. Steven K. Rose & Richard Richels & Geoffrey Blanford & Thomas Rutherford, 2017. "The Paris Agreement and next steps in limiting global warming," Climatic Change, Springer, vol. 142(1), pages 255-270, May.
    8. Muhammad Kashif Rafique & Zunaib Maqsood Haider & Khawaja Khalid Mehmood & Muhammad Saeed Uz Zaman & Muhammad Irfan & Saad Ullah Khan & Chul-Hwan Kim, 2018. "Optimal Scheduling of Hybrid Energy Resources for a Smart Home," Energies, MDPI, vol. 11(11), pages 1-19, November.
    9. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    10. Kim, Jong Suk & Edgar, Thomas F., 2014. "Optimal scheduling of combined heat and power plants using mixed-integer nonlinear programming," Energy, Elsevier, vol. 77(C), pages 675-690.
    11. Akbar Maleki & Marc A. Rosen & Fathollah Pourfayaz, 2017. "Optimal Operation of a Grid-Connected Hybrid Renewable Energy System for Residential Applications," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    12. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    13. Nazari-Heris, M. & Mohammadi-Ivatloo, B., 2015. "Application of heuristic algorithms to optimal PMU placement in electric power systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 214-228.
    14. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    15. Steen, David & Stadler, Michael & Cardoso, Gonçalo & Groissböck, Markus & DeForest, Nicholas & Marnay, Chris, 2015. "Modeling of thermal storage systems in MILP distributed energy resource models," Applied Energy, Elsevier, vol. 137(C), pages 782-792.
    16. Dariush Khezrimotlagh & Yao Chen, 2018. "The Optimization Approach," International Series in Operations Research & Management Science, in: Decision Making and Performance Evaluation Using Data Envelopment Analysis, chapter 0, pages 107-134, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucrezia Manservigi & Mattia Cattozzo & Pier Ruggero Spina & Mauro Venturini & Hilal Bahlawan, 2020. "Optimal Management of the Energy Flows of Interconnected Residential Users," Energies, MDPI, vol. 13(6), pages 1-21, March.
    2. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    3. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    4. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    5. Li, Yang & Wang, Bin & Yang, Zhen & Li, Jiazheng & Chen, Chen, 2022. "Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via Stackelberg game," Applied Energy, Elsevier, vol. 308(C).
    6. Luca Urbanucci & Francesco D’Ettorre & Daniele Testi, 2019. "A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage," Energies, MDPI, vol. 12(5), pages 1-17, March.
    7. Kumar Jadoun, Vinay & Rahul Prashanth, G & Suhas Joshi, Siddharth & Narayanan, K. & Malik, Hasmat & García Márquez, Fausto Pedro, 2022. "Optimal fuzzy based economic emission dispatch of combined heat and power units using dynamically controlled Whale Optimization Algorithm," Applied Energy, Elsevier, vol. 315(C).
    8. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    9. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    10. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    11. Henrique Pires Corrêa & Rafael Ribeiro de Carvalho Vaz & Flávio Henrique Teles Vieira & Sérgio Granato de Araújo, 2019. "Reliability Based Genetic Algorithm Applied to Allocation of Fiber Optics Links for Power Grid Automation," Energies, MDPI, vol. 12(11), pages 1-26, May.
    12. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    13. Simon Pezzutto & Giulio Quaglini & Andrea Zambito & Antonio Novelli & Philippe Riviere & Lukas Kranzl & Eric Wilczynski, 2022. "Potential Evolution of the Cooling Market in the EU27+UK: An Outlook until 2030," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    14. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    15. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    16. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    18. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    19. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    20. Sen Liu & Wei Yu & Ling Liu & Yanan Hu, 2019. "Variable weights theory and its application to multi-attribute group decision making with intuitionistic fuzzy numbers on determining decision maker’s weights," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1588-:d:516142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.