IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v50y2015icp214-228.html
   My bibliography  Save this article

Application of heuristic algorithms to optimal PMU placement in electric power systems: An updated review

Author

Listed:
  • Nazari-Heris, M.
  • Mohammadi-Ivatloo, B.

Abstract

Phasor measurement unit (PMU) plays an important role in operation, protection, and control of modern power systems. PMU provides real time, synchronized measurements of bus voltage and branch current phasors. It is neither economical nor possible to place all the buses of the system with PMUs because of their high cost and communication facilities. Attaining the minimal number of PMUs to access an observable power system is the main objective of optimal PMU placement (OPP) problem, which is solved by utilizing different techniques. Graph theoretic and mathematical programming procedures have been first introduced to solve OPP problem, aiming to access power system observability. Heuristic method as an experience-based technique is defined as a quick method for obtaining solutions for optimization problems, in which optimal solutions are not achievable using mathematical methods in finite time. This paper provided the literature review on different heuristic optimization methods to solve the OPP problem. Then, the available methods were classified and compared with different points of views. Results from the tests of researches on heuristic algorithms with and without the consideration of zero-injection buses were compared and superiorities of the introduced heuristic concepts were demonstrated with relative to each other.

Suggested Citation

  • Nazari-Heris, M. & Mohammadi-Ivatloo, B., 2015. "Application of heuristic algorithms to optimal PMU placement in electric power systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 214-228.
  • Handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:214-228
    DOI: 10.1016/j.rser.2015.04.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115004220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaoula Hassini & Ahmed Fakhfakh & Faouzi Derbel, 2023. "Optimal Placement of μ PMUs in Distribution Networks with Adaptive Topology Changes," Energies, MDPI, vol. 16(20), pages 1-27, October.
    2. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    3. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiroz & Bargos, Danubia Caporusso & Neto, Morun Bernardino & Pardal, Paula Cristiane Pinto Mesquita, 2016. "Location problem method applied to sugar and ethanol mills location optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 274-282.
    4. Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
    5. Nikolaos P. Theodorakatos & Miltiadis Lytras & Rohit Babu, 2020. "Towards Smart Energy Grids: A Box-Constrained Nonlinear Underdetermined Model for Power System Observability Using Recursive Quadratic Programming," Energies, MDPI, vol. 13(7), pages 1-17, April.
    6. Ting Yang & Feng Zhai & Jialin Liu & Meng Wang & Haibo Pen, 2018. "Self-organized cyber physical power system blockchain architecture and protocol," International Journal of Distributed Sensor Networks, , vol. 14(10), pages 15501477188, October.
    7. Mohammad Shoaib Shahriar & Ibrahim Omar Habiballah & Huthaifa Hussein, 2018. "Optimization of Phasor Measurement Unit (PMU) Placement in Supervisory Control and Data Acquisition (SCADA)-Based Power System for Better State-Estimation Performance," Energies, MDPI, vol. 11(3), pages 1-15, March.
    8. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Haghrah, A., 2017. "Optimal short-term generation scheduling of hydrothermal systems by implementation of real-coded genetic algorithm based on improved Mühlenbein mutation," Energy, Elsevier, vol. 128(C), pages 77-85.
    9. Su, Hongzhi & Wang, Chengshan & Li, Peng & Liu, Zhelin & Yu, Li & Wu, Jianzhong, 2019. "Optimal placement of phasor measurement unit in distribution networks considering the changes in topology," Applied Energy, Elsevier, vol. 250(C), pages 313-322.
    10. Zhi Wu & Xiao Du & Wei Gu & Ping Ling & Jinsong Liu & Chen Fang, 2018. "Optimal Micro-PMU Placement Using Mutual Information Theory in Distribution Networks," Energies, MDPI, vol. 11(7), pages 1-19, July.
    11. Mohammed Amroune & Ismail Musirin & Tarek Bouktir & Muhammad Murtadha Othman, 2017. "The Amalgamation of SVR and ANFIS Models with Synchronized Phasor Measurements for On-Line Voltage Stability Assessment," Energies, MDPI, vol. 10(11), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marianov, Vladimir & Serra, Daniel & ReVelle, Charles, 1999. "Location of hubs in a competitive environment," European Journal of Operational Research, Elsevier, vol. 114(2), pages 363-371, April.
    2. Chiara Gruden & Irena Ištoka Otković & Matjaž Šraml, 2020. "Neural Networks Applied to Microsimulation: A Prediction Model for Pedestrian Crossing Time," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    3. Chou, Jui-Sheng & Truong, Dinh-Nhat, 2021. "A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    4. Thibaud Deguilhem & Juliette Schlegel & Jean-Philippe Berrou & Ousmane Djibo & Alain Piveteau, 2024. "Too many options: How to identify coalitions in a policy network?," Post-Print hal-04689665, HAL.
    5. Anurag Agarwal, 2009. "Theoretical insights into the augmented-neural-network approach for combinatorial optimization," Annals of Operations Research, Springer, vol. 168(1), pages 101-117, April.
    6. Helena Ramalhinho-Lourenço & Olivier C. Martin & Thomas Stützle, 2000. "Iterated local search," Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra.
    7. Marti, Rafael, 1998. "A tabu search algorithm for the bipartite drawing problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 558-569, April.
    8. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    9. Nha Vo‐Thanh & Hans‐Peter Piepho, 2023. "Generating designs for comparative experiments with two blocking factors," Biometrics, The International Biometric Society, vol. 79(4), pages 3574-3585, December.
    10. Сластников С.А., 2014. "Применение Метаэвристических Алгоритмов Для Задачи Маршрутизации Транспорта," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 50(1), pages 117-126, январь.
    11. Hanafi, Said & Freville, Arnaud, 1998. "An efficient tabu search approach for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 659-675, April.
    12. Grolimund, Stephan & Ganascia, Jean-Gabriel, 1997. "Driving Tabu Search with case-based reasoning," European Journal of Operational Research, Elsevier, vol. 103(2), pages 326-338, December.
    13. repec:dar:wpaper:62383 is not listed on IDEAS
    14. Minghe Sun, 2007. "A Primogenitary Linked Quad Tree Approach for Solution Storage and Retrieval in Heuristic Binary Optimization," Working Papers 0009, College of Business, University of Texas at San Antonio.
    15. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    16. Jack Brimberg & Pierre Hansen & Nenad Mladenović & Eric D. Taillard, 2000. "Improvements and Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem," Operations Research, INFORMS, vol. 48(3), pages 444-460, June.
    17. Deng, Ye & Wu, Jun & Tan, Yue-jin, 2016. "Optimal attack strategy of complex networks based on tabu search," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 74-81.
    18. Drexl, Andreas & Haase, Knut, 1996. "Fast approximation methods for sales force deployment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 411, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Rego, Cesar & Roucairol, Catherine, 1995. "Using Tabu search for solving a dynamic multi-terminal truck dispatching problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 411-429, June.
    20. Chen, Lu & Langevin, André & Riopel, Diane, 2011. "A tabu search algorithm for the relocation problem in a warehousing system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 147-156, January.
    21. H. A. J. Crauwels & C. N. Potts & L. N. Van Wassenhove, 1998. "Local Search Heuristics for the Single Machine Total Weighted Tardiness Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 10(3), pages 341-350, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:50:y:2015:i:c:p:214-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.