IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1529-d113899.html
   My bibliography  Save this article

Gasification Performance of a Top-Lit Updraft Cook Stove

Author

Listed:
  • Yogesh Mehta

    (School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA)

  • Cecilia Richards

    (School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA)

Abstract

This paper reports on an experimental study of a top-lit updraft cook stove with a focus on gasification. The reactor is operated with primary air only. The performance is studied for a variation in the primary airflow, as well as reactor geometry. Temperature in the reactor, air flow rate, fuel consumption rate, and producer gas composition were measured. From the measurements the superficial velocity, pyrolysis front velocity, peak bed temperature, air fuel ratio, heating value of the producer gas, and gasification rate were calculated. The results show that the producer gas energy content was maximized at a superficial velocity of 9 cm/s. The percent char remaining at the end of gasification decreased with increasing combustion chamber diameter. For a fixed superficial velocity, the gasification rate and producer gas energy content were found to scale linearly with diameter. The energy content of the producer gas was maximized at an air fuel (AF) ratio of 1.8 regardless of the diameter.

Suggested Citation

  • Yogesh Mehta & Cecilia Richards, 2017. "Gasification Performance of a Top-Lit Updraft Cook Stove," Energies, MDPI, vol. 10(10), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1529-:d:113899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.
    2. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2014. "A comprehensive review on biomass cookstoves and a systematic approach for modern cookstove design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 580-603.
    3. George Y. Obeng & Ebenezer Mensah & George Ashiagbor & Owusu Boahen & Daniel J. Sweeney, 2017. "Watching the Smoke Rise Up: Thermal Efficiency, Pollutant Emissions and Global Warming Impact of Three Biomass Cookstoves in Ghana," Energies, MDPI, vol. 10(5), pages 1-14, May.
    4. Kirubakaran, V. & Sivaramakrishnan, V. & Nalini, R. & Sekar, T. & Premalatha, M. & Subramanian, P., 2009. "A review on gasification of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 179-186, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Gallucci & Raffaele Liberatore & Luca Sapegno & Edoardo Volponi & Paolo Venturini & Franco Rispoli & Enrico Paris & Monica Carnevale & Andrea Colantoni, 2019. "Influence of Oxidant Agent on Syngas Composition: Gasification of Hazelnut Shells through an Updraft Reactor," Energies, MDPI, vol. 13(1), pages 1-13, December.
    2. Jain, Tanmay & Sheth, Pratik N., 2019. "Design of energy utilization test for a biomass cook stove: Formulation of an optimum air flow recipe," Energy, Elsevier, vol. 166(C), pages 1097-1105.
    3. Quintero-Coronel, D.A. & Lenis-Rodas, Y.A. & Corredor, L.A. & Perreault, P. & Gonzalez-Quiroga, A., 2021. "Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor: Experimental assessment of the ignition front propagation velocity," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Borello & Antonio M. Pantaleo & Michele Caucci & Benedetta De Caprariis & Paolo De Filippis & Nilay Shah, 2017. "Modeling and Experimental Study of a Small Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis," Energies, MDPI, vol. 10(12), pages 1-17, November.
    2. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    3. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    4. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    5. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    6. Arthur M. James R. & Wenqiao Yuan & Michael D. Boyette, 2016. "The Effect of Biomass Physical Properties on Top-Lit Updraft Gasification of Woodchips," Energies, MDPI, vol. 9(4), pages 1-13, April.
    7. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Myung Lang Yoo & Yong Ho Park & Young-Kwon Park & Sung Hoon Park, 2016. "Catalytic Pyrolysis of Wild Reed over a Zeolite-Based Waste Catalyst," Energies, MDPI, vol. 9(3), pages 1-9, March.
    9. Przybyla, Grzegorz & Szlek, Andrzej & Haggith, Dale & Sobiesiak, Andrzej, 2016. "Fuelling of spark ignition and homogenous charge compression ignition engines with low calorific value producer gas," Energy, Elsevier, vol. 116(P3), pages 1464-1478.
    10. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    11. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    12. Li, C.Y. & Wu, J.Y. & Shen, Y. & Kan, X. & Dai, Y.J. & Wang, C.-H., 2018. "Evaluation of a combined cooling, heating, and power system based on biomass gasification in different climate zones in the U.S," Energy, Elsevier, vol. 144(C), pages 326-340.
    13. Wei, Rufei & Feng, Shanghuan & Long, Hongming & Li, Jiaxin & Yuan, Zhongshun & Cang, Daqiang & Xu, Chunbao (Charles), 2017. "Coupled biomass (lignin) gasification and iron ore reduction: A novel approach for biomass conversion and application," Energy, Elsevier, vol. 140(P1), pages 406-414.
    14. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    15. Cesare Caputo & Ondřej Mašek, 2021. "SPEAR (Solar Pyrolysis Energy Access Reactor): Theoretical Design and Evaluation of a Small-Scale Low-Cost Pyrolysis Unit for Implementation in Rural Communities," Energies, MDPI, vol. 14(8), pages 1-27, April.
    16. Gould, Carlos F. & Urpelainen, Johannes, 2018. "LPG as a clean cooking fuel: Adoption, use, and impact in rural India," Energy Policy, Elsevier, vol. 122(C), pages 395-408.
    17. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    18. Lombardi, Francesco & Colombo, Luigi & Colombo, Emanuela, 2017. "Design and validation of a Cooking Stoves Thermal Performance Simulator (Cook-STePS) to simulate water heating procedures in selected conditions," Energy, Elsevier, vol. 141(C), pages 1384-1392.
    19. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    20. Götz Uckert & Frieder Graef & Anja Faße & Ludger Herrmann & Harry Hoffmann & Frederick C. Kahimba & Luitfred Kissoly & Hannes J. König & Christine Lambert & Henry Mahoo & Bashir Makoko & Leon Mrosso &, 2018. "ScalA-FS: expert-based ex-ante assessments of local requirements and success potential of upgrading strategies for improving food security in rural Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 841-858, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1529-:d:113899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.