IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v151y2009i2p150-158.html
   My bibliography  Save this article

Long memory and long run variation

Author

Listed:
  • Phillips, Peter C.B.

Abstract

A commonly used defining property of long memory time series is the power law decay of the autocovariance function. Some alternative methods of deriving this property are considered, working from the alternate definition in terms of a fractional pole in the spectrum at the origin. The methods considered involve the use of (i) Fourier transforms of generalized functions, (ii) asymptotic expansions of Fourier integrals with singularities, (iii) direct evaluation using hypergeometric function algebra, and (iv) conversion to a simple gamma integral. The paper is largely pedagogical but some novel methods and results involving complete asymptotic series representations are presented. The formulae are useful in many ways, including the calculation of long run variation matrices for multivariate time series with long memory and the econometric estimation of such models.

Suggested Citation

  • Phillips, Peter C.B., 2009. "Long memory and long run variation," Journal of Econometrics, Elsevier, vol. 151(2), pages 150-158, August.
  • Handle: RePEc:eee:econom:v:151:y:2009:i:2:p:150-158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(09)00079-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lieberman, Offer & Phillips, Peter C.B., 2008. "A complete asymptotic series for the autocovariance function of a long memory process," Journal of Econometrics, Elsevier, vol. 147(1), pages 99-103, November.
    2. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, September.
    3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    4. P. C. B. Phillips, 1985. "A Theorem on the Tail Behaviour of Probability Distributions with an Application to the Stable Family," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 58-65, February.
    5. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, September.
    6. Robinson, P.M., 2008. "Diagnostic testing for cointegration," Journal of Econometrics, Elsevier, vol. 143(1), pages 206-225, March.
    7. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 137(2), pages 277-310, April.
    8. Phillips, Peter C.B. & Kim, Chang Sik, 2007. "Long-Run Covariance Matrices For Fractionally Integrated Processes," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1233-1247, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Eduardo Vera-Valdés, 2021. "Nonfractional Long-Range Dependence: Long Memory, Antipersistence, and Aggregation," Econometrics, MDPI, vol. 9(4), pages 1-18, October.
    2. Simos Theodore, 2012. "On the Exact Discretization of a Continuous Time AR(1) Model driven by either Long Memory or Antipersistent Innovations: A Fractional Algebra Approach," Journal of Time Series Econometrics, De Gruyter, vol. 4(2), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," EconomiX Working Papers 2019-14, University of Paris Nanterre, EconomiX.
    2. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    3. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    4. Claudio Michelacci, 1999. "Cross-Sectional Heterogeneity and the Persistence of Aggregate Fluctuations," Working Papers wp1999_9906, CEMFI.
    5. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    6. Georgios P. Kouretas & Mark E. Wohar, 2012. "The dynamics of inflation: a study of a large number of countries," Applied Economics, Taylor & Francis Journals, vol. 44(16), pages 2001-2026, June.
    7. Michelacci, Claudio, 2004. "Cross-sectional heterogeneity and the persistence of aggregate fluctuations," Journal of Monetary Economics, Elsevier, vol. 51(7), pages 1321-1352, October.
    8. Vidal-Sanz, Jose M., 2007. "The long memory of newspapers' subscriptions : between the short-run and persistence response," DEE - Working Papers. Business Economics. WB wb076411, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    9. Hans KREMERS & Andreas LOESCHEL, 2010. "The Strategic Implications of Setting Border Tax Adjustments," EcoMod2010 259600097, EcoMod.
    10. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Teyssière, Gilles, 1999. "Modelling exchange rates volatility with multivariate long-memory ARCH processes," SFB 373 Discussion Papers 1999,5, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    13. Jorge V Pérez-Rodríguez & María Santana-Gallego, 2020. "Modelling tourism receipts and associated risks, using long-range dependence models," Tourism Economics, , vol. 26(1), pages 70-96, February.
    14. Federico Di Pace & Matthias Hertweck, 2019. "Labor Market Frictions, Monetary Policy, and Durable Goods," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 32, pages 274-304, April.
    15. repec:wyi:journl:002087 is not listed on IDEAS
    16. van Soest, A.H.O. & Das, J.W.M., 2000. "Family Labor Supply and Proposed Tax Reforms in the Netherlands," Discussion Paper 2000-20, Tilburg University, Center for Economic Research.
    17. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    18. Juan M. Contreras & Sven H. Sinclair, 2008. "The Labor Supply Response in Macroeconomic Models: Working Paper 2008-07," Working Papers 20141, Congressional Budget Office.
    19. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    20. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    21. Antonella Trigari, 2006. "The Role of Search Frictions and Bargaining for Inflation Dynamics," Working Papers 304, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Keywords

    Asymptotic expansion Autocovariance function Fractional pole Fourier integral Generalized function Long memory Long range dependence Singularity;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:151:y:2009:i:2:p:150-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.