IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v17y2019i4p517-558..html
   My bibliography  Save this article

The VIX, the Variance Premium, and Expected Returns

Author

Listed:
  • Daniela Osterrieder
  • Daniel Ventosa-Santaulària
  • J Eduardo Vera-Valdés

Abstract

Existing studies find conflicting estimates of the risk–return relation. We show that the trade-off parameter is inconsistently estimated when observed or estimated conditional variances measure risk. The inconsistency arises from misspecified, unbalanced, and endogenous return regressions. These problems are eliminated if risk is captured by the variance premium (VP) instead; it is unobservable, however. We propose a 2SLS estimator that produces consistent estimates without observing the VP. Using this method, we find a positive risk–return trade-off and long-run return predictability. Our approach outperforms commonly used risk–return estimation methods, and reveals a significant link between the VP and economic uncertainty.

Suggested Citation

  • Daniela Osterrieder & Daniel Ventosa-Santaulària & J Eduardo Vera-Valdés, 2019. "The VIX, the Variance Premium, and Expected Returns," Journal of Financial Econometrics, Oxford University Press, vol. 17(4), pages 517-558.
  • Handle: RePEc:oup:jfinec:v:17:y:2019:i:4:p:517-558.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nby008
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Eduardo Vera-Valdés, 2021. "Nonfractional Long-Range Dependence: Long Memory, Antipersistence, and Aggregation," Econometrics, MDPI, vol. 9(4), pages 1-18, October.
    2. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    3. Ke-Li Xu & Junjie Guo, 2021. "A New Test for Multiple Predictive Regression," CAEPR Working Papers 2022-001 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    4. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    5. Vera-Valdés, J. Eduardo, 2022. "The persistence of financial volatility after COVID-19," Finance Research Letters, Elsevier, vol. 44(C).

    More about this item

    Keywords

    fractional integration; implied variance; integrated variance; persistent predictor; return prediction; risk–return trade-off; variance premium;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:17:y:2019:i:4:p:517-558.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.