IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v25y2004i3p335-350.html
   My bibliography  Save this article

Aggregation of random parameters Ornstein‐Uhlenbeck or AR processes: some convergence results

Author

Listed:
  • Georges Oppenheim
  • Marie‐Claude Viano

Abstract

. It is shown that by aggregating simple random parameters, processes such as autoregressive micro‐relationships or Ornstein‐Uhlenbeck processes, one can obtain various seasonal long memory Gaussian models. The investigation concerns the discrete as well as the continuous time setting. In both situations the precise asymptotic behaviour of the covariance is studied. The regularity of sample paths is evaluated when possible.

Suggested Citation

  • Georges Oppenheim & Marie‐Claude Viano, 2004. "Aggregation of random parameters Ornstein‐Uhlenbeck or AR processes: some convergence results," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(3), pages 335-350, May.
  • Handle: RePEc:bla:jtsera:v:25:y:2004:i:3:p:335-350
    DOI: 10.1111/j.1467-9892.2004.01775.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2004.01775.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2004.01775.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    2. Viano, M. C. & Deniau, C. & Oppenheim, G., 1994. "Continuous-time fractional ARMA processes," Statistics & Probability Letters, Elsevier, vol. 21(4), pages 323-336, November.
    3. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Eduardo Vera-Valdés, 2021. "Nonfractional Long-Range Dependence: Long Memory, Antipersistence, and Aggregation," Econometrics, MDPI, vol. 9(4), pages 1-18, October.
    2. Jan Beran & Haiyan Liu & Sucharita Ghosh, 2020. "On aggregation of strongly dependent time series," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 690-710, September.
    3. Remigijus Leipus & Anne Philippe & Vytautė Pilipauskaitė & Donatas Surgailis, 2020. "Estimating Long Memory in Panel Random‐Coefficient AR(1) Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 520-535, July.
    4. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
    5. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2014. "Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1011-1035.
    6. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    7. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    8. Gil-Alana, Luis A. & Mudida, Robert & Zerbo, Eleazar, 2021. "GDP per capita IN SUB-SAHARAN Africa: A time series approach using long memory," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 175-190.
    9. J. Eduardo Vera‐Valdés, 2020. "On long memory origins and forecast horizons," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 811-826, August.
    10. J. Eduardo Vera-Vald'es, 2018. "Nonfractional Memory: Filtering, Antipersistence, and Forecasting," Papers 1801.06677, arXiv.org.
    11. Caporale, Guglielmo Maria & Gil-Alana, Luis A. & Poza, Carlos, 2020. "High and low prices and the range in the European stock markets: A long-memory approach," Research in International Business and Finance, Elsevier, vol. 52(C).
    12. Jirak, Moritz, 2013. "A Darling–Erdös type result for stationary ellipsoids," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1922-1946.
    13. Haldrup, Niels & Vera Valdés, J. Eduardo, 2017. "Long memory, fractional integration, and cross-sectional aggregation," Journal of Econometrics, Elsevier, vol. 199(1), pages 1-11.
    14. Dmitrij Celov & Remigijus Leipus & Anne Philippe, 2010. "Asymptotic normality of the mixture density estimator in a disaggregation scheme," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 425-442.
    15. Beran, Jan & Schützner, Martin & Ghosh, Sucharita, 2010. "From short to long memory: Aggregation and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2432-2442, November.
    16. Thornton, Michael A., 2014. "The aggregation of dynamic relationships caused by incomplete information," Journal of Econometrics, Elsevier, vol. 178(P2), pages 342-351.
    17. Anne Philippe & Donata Puplinskaite & Donatas Surgailis, 2014. "Contemporaneous Aggregation Of Triangular Array Of Random-Coefficient Ar(1) Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 16-39, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baillie, Richard T & Bollerslev, Tim, 1994. "Cointegration, Fractional Cointegration, and Exchange Rate Dynamics," Journal of Finance, American Finance Association, vol. 49(2), pages 737-745, June.
    2. Diongue Abdou Ka & Dominique Guegan, 2008. "Estimation of k-Factor Gigarch Process: A Monte Carlo Study," Post-Print halshs-00375758, HAL.
    3. Dominique Guégan, 2009. "A Meta-Distribution for Non-Stationary Samples," CREATES Research Papers 2009-24, Department of Economics and Business Economics, Aarhus University.
    4. Gil-Alana, Luis A. & Aye, Goodness C. & Gupta, Rangan, 2015. "Trends and cycles in historical gold and silver prices," Journal of International Money and Finance, Elsevier, vol. 58(C), pages 98-109.
    5. Proietti, Tommaso & Maddanu, Federico, 2024. "Modelling cycles in climate series: The fractional sinusoidal waveform process," Journal of Econometrics, Elsevier, vol. 239(1).
    6. Proietti, Tommaso, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," MPRA Paper 57230, University Library of Munich, Germany.
    7. Teyssière, Gilles, 1999. "Modelling exchange rates volatility with multivariate long-memory ARCH processes," SFB 373 Discussion Papers 1999,5, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Abdou Kâ Diongue & Dominique Guegan, 2008. "Estimation of k-factor GIGARCH process : a Monte Carlo study," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00235179, HAL.
    9. Luis A. Gil-Alana & Juan Carlos Cuestas, 2012. "A Non-linear Approach with Long Range Dependence based on Chebyshev Polynomials," Faculty Working Papers 14/12, School of Economics and Business Administration, University of Navarra.
    10. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    11. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
    12. Chung, Ching-Fan, 1996. "Estimating a generalized long memory process," Journal of Econometrics, Elsevier, vol. 73(1), pages 237-259, July.
    13. Dominique Guegan, 2007. "Global and local stationary modelling in finance: theory and empirical evidence," Post-Print halshs-00187875, HAL.
    14. Gil-Alana, L., 1998. "Multivariate Tests of Fractionally Integrated Hypotheses," Economics Working Papers eco98/19, European University Institute.
    15. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    16. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    17. Cuestas Juan Carlos & Gil-Alana Luis Alberiko, 2016. "Testing for long memory in the presence of non-linear deterministic trends with Chebyshev polynomials," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(1), pages 57-74, February.
    18. Ignacio Rodríguez Carreño & L. Gila Useros, A. Malanda Trigueros, J. Navallas Irujo, J. Rodríguez Falces, S. Gómez Elvira, 2008. "Influence of Baseline Fluctuation Cancellation on Automatic Measurement of Motor Unit Action Potential Duration," Faculty Working Papers 13/08, School of Economics and Business Administration, University of Navarra.
    19. Luis A. Gil-Alana, 2009. "Time series modelling of sunspot numbers using long range cyclical dependence," Faculty Working Papers 06/09, School of Economics and Business Administration, University of Navarra.
    20. Bensalma, Ahmed, 2018. "Two Distinct Seasonally Fractionally Differenced Periodic Processes," MPRA Paper 84969, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:i:3:p:335-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.