IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v416y2014icp582-595.html
   My bibliography  Save this article

Explicit expressions of the Pietra index for the generalized function for the size distribution of income

Author

Listed:
  • Sarabia, José María
  • Jordá, Vanesa

Abstract

The importance of the Pietra index in socioeconomic systems and econophysics has been highlighted by Eliazar and Sokolov (2010). In this paper, we obtain closed expressions for the Pietra index for the generalized function for the size of income proposed by McDonald (1984). This family is composed of three classes of distributions: the generalized gamma distribution (GG), the generalized beta of the first kind (GB1) and the generalized beta of the second kind (GB2). For the different distributions, we obtain closed and simple expressions of the Pietra index, which can be easily computed. We also obtain the Pietra index for other relevant income models including finite mixtures of distributions and the κ-generalized distribution (Clementi et al., 2008). Finally, two empirical applications with real income data are given.

Suggested Citation

  • Sarabia, José María & Jordá, Vanesa, 2014. "Explicit expressions of the Pietra index for the generalized function for the size distribution of income," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 582-595.
  • Handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:582-595
    DOI: 10.1016/j.physa.2014.09.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007833
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.09.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kondor, Yaakov, 1971. "An Old-New Measure of Income Inequality," Econometrica, Econometric Society, vol. 39(6), pages 1041-1042, November.
    2. Paapaa, Richard & van Dijk, Herman K., 1998. "Distribution and mobility of wealth of nations," European Economic Review, Elsevier, vol. 42(7), pages 1269-1293, July.
    3. McDonald, James B & Mantrala, Anand, 1995. "The Distribution of Personal Income: Revisited," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 201-204, April-Jun.
    4. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    5. Singh, S K & Maddala, G S, 1976. "A Function for Size Distribution of Incomes," Econometrica, Econometric Society, vol. 44(5), pages 963-970, September.
    6. Angle, John, 2006. "The Inequality Process as a wealth maximizing process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 388-414.
    7. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    8. F. Clementi & M. Gallegati & G. Kaniadakis, 2007. "κ-generalized statistics in personal income distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 187-193, May.
    9. Eliazar, Iddo I. & Sokolov, Igor M., 2012. "Measuring statistical evenness: A panoramic overview," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1323-1353.
    10. Benito Frosini, 2012. "Approximation and decomposition of Gini, Pietra–Ricci and Theil inequality measures," Empirical Economics, Springer, vol. 43(1), pages 175-197, August.
    11. Eliazar, Iddo I. & Sokolov, Igor M., 2010. "Measuring statistical heterogeneity: The Pietra index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 117-125.
    12. José María Sarabia, 2008. "Parametric Lorenz Curves: Models and Applications," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 9, pages 167-190, Springer.
    13. Sudhir Anand & Paul Segal, 2008. "What Do We Know about Global Income Inequality?," Journal of Economic Literature, American Economic Association, vol. 46(1), pages 57-94, March.
    14. Butler, Richard J & McDonald, James B, 1987. "Interdistributional Income Inequality," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(1), pages 13-18, January.
    15. Clementi, F. & Di Matteo, T. & Gallegati, M. & Kaniadakis, G., 2008. "The κ-generalized distribution: A new descriptive model for the size distribution of incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3201-3208.
    16. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 133-152.
    17. F. Clementi & M. Gallegati & G. Kaniadakis, 2012. "A generalized statistical model for the size distribution of wealth," Papers 1209.4787, arXiv.org, revised Dec 2012.
    18. McDonald, James B & Butler, Richard J, 1987. "Some Generalized Mixture Distributions with an Application to Unemployment Duration," The Review of Economics and Statistics, MIT Press, vol. 69(2), pages 232-240, May.
    19. Jose-Mari Sarabia, 1997. "A hierarchy of lorenz curves based on the generalized tukey's lambda distribution," Econometric Reviews, Taylor & Francis Journals, vol. 16(3), pages 305-320.
    20. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    21. Stephen P. Jenkins, 2009. "Distributionally‐Sensitive Inequality Indices And The Gb2 Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(2), pages 392-398, June.
    22. Eliazar, Iddo, 2011. "The Pietra term structures of financial assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 699-706.
    23. Jos'e Mar'ia Sarabia & Faustino Prieto & Vanesa Jord'a, 2014. "A variation of the Dragulescu-Yakovenko income model," Papers 1406.5083, arXiv.org.
    24. Arnold, Barry C., 2012. "On the Amato inequality index," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1504-1506.
    25. Sarabia, José María & Prieto, Faustino & Trueba, Carmen & Jordá, Vanesa, 2013. "About the modified Gaussian family of income distributions with applications to individual incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1398-1408.
    26. Rosenblatt, J. & Martinás, K., 2008. "Inequality indicators and distinguishability in economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2047-2054.
    27. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    28. Gastwirth, Joseph L, 1971. "A General Definition of the Lorenz Curve," Econometrica, Econometric Society, vol. 39(6), pages 1037-1039, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
    2. Vanesa Jorda & Jos Mar a Sarabia & Markus J ntti, 2020. "Estimation of Income Inequality from Grouped Data," LIS Working papers 804, LIS Cross-National Data Center in Luxembourg.
    3. Sarabia, José María & Prieto, Faustino & Jordá, Vanesa, 2015. "About the hyperbolic Lorenz curve," Economics Letters, Elsevier, vol. 136(C), pages 42-45.
    4. Duangkamon Chotikapanich & William E. Griffiths & Gholamreza Hajargasht & Wasana Karunarathne & D. S. Prasada Rao, 2018. "Using the GB2 Income Distribution," Econometrics, MDPI, vol. 6(2), pages 1-24, April.
    5. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    6. Jordá, Vanesa & Alonso, José M., 2017. "New Estimates on Educational Attainment Using a Continuous Approach (1970–2010)," World Development, Elsevier, vol. 90(C), pages 281-293.
    7. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    8. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    9. Francesco Porro & Mariangela Zenga, 2023. "Decompositions by sources and by subpopulations of the Pietra index: two applications to professional football teams in Italy," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 73-100, March.
    10. Dashti Moghaddam, M. & Mills, Jeffrey & Serota, R.A., 2020. "From a stochastic model of economic exchange to measures of inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
    2. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    3. Sarabia, José María, 2008. "A general definition of the Leimkuhler curve," Journal of Informetrics, Elsevier, vol. 2(2), pages 156-163.
    4. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    5. Jordá, Vanesa & Niño-Zarazúa, Miguel, 2019. "Global inequality: How large is the effect of top incomes?," World Development, Elsevier, vol. 123(C), pages 1-1.
    6. José María Sarabia & Vanesa Jordá & Lorena Remuzgo, 2017. "The Theil Indices in Parametric Families of Income Distributions—A Short Review," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(4), pages 867-880, December.
    7. Fabio CLEMENTI & Mauro GALLEGATI, 2017. "NEW ECONOMIC WINDOWS ON INCOME AND WEALTH: THE k-GENERALIZED FAMILY OF DISTRIBUTIONS," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 6(1), pages 1-15, JULY.
    8. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    9. Domma, Filippo & Condino, Francesca & Giordano, Sabrina, 2018. "A new formulation of the Dagum distribution in terms of income inequality and poverty measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 104-126.
    10. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    11. Masato Okamoto, 2014. "Interpolating the Lorenz Curve: Methods to Preserve Shape and Remain Consistent with the Concentration Curves for Components," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(2), pages 349-384, June.
    12. Sung Y. Park & Anil K. Bera, 2018. "Information theoretic approaches to income density estimation with an application to the U.S. income data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 16(4), pages 461-486, December.
    13. David Warner & Prasada Rao & William E. Griffiths & Duangkamon Chotikapanich, 2011. "Global Inequality: Levels and Trends, 1993-2005," Discussion Papers Series 436, School of Economics, University of Queensland, Australia.
    14. Edwin Fourrier-Nicolaï & Michel Lubrano, 2021. "Bayesian Inference for Parametric Growth Incidence Curves," Research on Economic Inequality, in: Research on Economic Inequality: Poverty, Inequality and Shocks, volume 29, pages 31-55, Emerald Group Publishing Limited.
    15. Mathias Silva, 2023. "Parametric estimation of income distributions using grouped data: an Approximate Bayesian Computation approach [Working Papers / Documents de travail]," Working Papers hal-04066544, HAL.
    16. Christian Kleiber, 2008. "A Guide to the Dagum Distributions," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 6, pages 97-117, Springer.
    17. Walter, Paul & Weimer, Katja, 2018. "Estimating poverty and inequality indicators using interval censored income data from the German microcensus," Discussion Papers 2018/10, Free University Berlin, School of Business & Economics.
    18. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.
    19. John Dagsvik & Zhiyang Jia & Bjørn Vatne & Weizhen Zhu, 2013. "Is the Pareto–Lévy law a good representation of income distributions?," Empirical Economics, Springer, vol. 44(2), pages 719-737, April.
    20. Costas Efthimiou & Adam Wearne, 2016. "Household Income Distribution in the USA," Papers 1602.06234, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:582-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.