IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v9y2024i8p94-d1443705.html
   My bibliography  Save this article

SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants

Author

Listed:
  • Bernd Accou

    (Experimental Oto-Rhino-Laryngology (ExpORL), Department Neurosciences, KU Leuven, B-3001 Leuven, Belgium
    Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), KU Leuven, B-3001 Leuven, Belgium
    These authors contributed equally to this work.)

  • Lies Bollens

    (Experimental Oto-Rhino-Laryngology (ExpORL), Department Neurosciences, KU Leuven, B-3001 Leuven, Belgium
    Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), KU Leuven, B-3001 Leuven, Belgium
    These authors contributed equally to this work.)

  • Marlies Gillis

    (Experimental Oto-Rhino-Laryngology (ExpORL), Department Neurosciences, KU Leuven, B-3001 Leuven, Belgium)

  • Wendy Verheijen

    (Experimental Oto-Rhino-Laryngology (ExpORL), Department Neurosciences, KU Leuven, B-3001 Leuven, Belgium)

  • Hugo Van hamme

    (Processing Speech and Images (PSI), Department of Electrical Engineering (ESAT), KU Leuven, B-3001 Leuven, Belgium)

  • Tom Francart

    (Experimental Oto-Rhino-Laryngology (ExpORL), Department Neurosciences, KU Leuven, B-3001 Leuven, Belgium)

Abstract

Researchers investigating the neural mechanisms underlying speech perception often employ electroencephalography (EEG) to record brain activity while participants listen to spoken language. The high temporal resolution of EEG enables the study of neural responses to fast and dynamic speech signals. Previous studies have successfully extracted speech characteristics from EEG data and, conversely, predicted EEG activity from speech features. Machine learning techniques are generally employed to construct encoding and decoding models, which necessitate a substantial quantity of data. We present SparrKULee, a Speech-evoked Auditory Repository of EEG data, measured at KU Leuven, comprising 64-channel EEG recordings from 85 young individuals with normal hearing, each of whom listened to 90–150 min of natural speech. This dataset is more extensive than any currently available dataset in terms of both the number of participants and the quantity of data per participant. It is suitable for training larger machine learning models. We evaluate the dataset using linear and state-of-the-art non-linear models in a speech encoding/decoding and match/mismatch paradigm, providing benchmark scores for future research.

Suggested Citation

  • Bernd Accou & Lies Bollens & Marlies Gillis & Wendy Verheijen & Hugo Van hamme & Tom Francart, 2024. "SparrKULee: A Speech-Evoked Auditory Response Repository from KU Leuven, Containing the EEG of 85 Participants," Data, MDPI, vol. 9(8), pages 1-18, July.
  • Handle: RePEc:gam:jdataj:v:9:y:2024:i:8:p:94-:d:1443705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/9/8/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/9/8/94/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geeraert, Joke & Rocha, Luis E.C. & Vandeviver, Christophe, 2024. "The impact of violent behavior on co-offender selection: Evidence of behavioral homophily," Journal of Criminal Justice, Elsevier, vol. 94(C).
    2. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    4. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    5. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    11. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Laura Portell & Sergi Morera & Helena Ramalhinho, 2022. "Door-to-Door Transportation Services for Reduced Mobility Population: A Descriptive Analytics of the City of Barcelona," IJERPH, MDPI, vol. 19(8), pages 1-20, April.
    13. Caroline Haimerl & Douglas A. Ruff & Marlene R. Cohen & Cristina Savin & Eero P. Simoncelli, 2023. "Targeted V1 comodulation supports task-adaptive sensory decisions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Pullinger, Martin & Zapata-Webborn, Ellen & Kilgour, Jonathan & Elam, Simon & Few, Jessica & Goddard, Nigel & Hanmer, Clare & McKenna, Eoghan & Oreszczyn, Tadj & Webb, Lynda, 2024. "Capturing variation in daily energy demand profiles over time with cluster analysis in British homes (September 2019 – August 2022)," Applied Energy, Elsevier, vol. 360(C).
    15. Matthias Wagener & Andriette Bekker & Mohammad Arashi, 2021. "Mastering the Body and Tail Shape of a Distribution," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    16. Gallo Cassarino, Tiziano & Barrett, Mark, 2022. "Meeting UK heat demands in zero emission renewable energy systems using storage and interconnectors," Applied Energy, Elsevier, vol. 306(PB).
    17. Maren Schnieder, 2023. "Ebike Sharing vs. Bike Sharing: Demand Prediction Using Deep Neural Networks and Random Forests," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    18. Gabriele Orlando & Daniele Raimondi & Ramon Duran-Romaña & Yves Moreau & Joost Schymkowitz & Frederic Rousseau, 2022. "PyUUL provides an interface between biological structures and deep learning algorithms," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Hazal Colak Oz & Çiçek Güven & Gonzalo Nápoles, 2023. "School dropout prediction and feature importance exploration in Malawi using household panel data: machine learning approach," Journal of Computational Social Science, Springer, vol. 6(1), pages 245-287, April.
    20. Vincent Wagner & Nicole Erika Radde, 2021. "SiCaSMA: An Alternative Stochastic Description via Concatenation of Markov Processes for a Class of Catalytic Systems," Mathematics, MDPI, vol. 9(10), pages 1-13, May.

    More about this item

    Keywords

    auditory EEG; dataset; speech;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:9:y:2024:i:8:p:94-:d:1443705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.