IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8080-d693893.html
   My bibliography  Save this article

Three-Dimensional Unsteady Aerodynamic Analysis of a Rigid-Framed Delta Kite Applied to Airborne Wind Energy

Author

Listed:
  • Iván Castro-Fernández

    (Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain)

  • Ricardo Borobia-Moreno

    (Centro de Experimentación de “El Arenosillo” (CEDEA), Instituto Nacional de Técnica Aeroespacial, Mazagón, 21130 Huelva, Spain)

  • Rauno Cavallaro

    (Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain)

  • Gonzalo Sánchez-Arriaga

    (Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain)

Abstract

The validity of using a low-computational-cost model for the aerodynamic characterization of Airborne Wind Energy Systems was studied by benchmarking a three-dimensional Unsteady Panel Method (UnPaM) with experimental data from a flight test campaign of a two-line Rigid-Framed Delta kite. The latter, and a subsequent analysis of the experimental data, provided the evolution of the tether tensions, the full kinematic state of the kite (aerodynamic velocity and angular velocity vectors, among others), and its aerodynamic coefficients. The history of the kinematic state was used as input for UnPaM that provided a set of theoretical aerodynamic coefficients. Disparate conclusions were found when comparing the experimental and theoretical aerodynamic coefficients. For a wide range of angles of attack and sideslip angles, the agreement in the lift and lateral force coefficients was good and moderate, respectively, considering UnPaM is a potential flow tool. As expected, UnPaM predicts a much lower drag because it ignores viscous effects. The comparison of the aerodynamic torque coefficients is more delicate due to uncertainties on the experimental data. Besides fully non-stationary simulations, the lift coefficient was also studied with UnPaM by assuming quasi-steady and steady conditions. It was found that for a typical figure-of-eight trajectory there are no significant differences between unsteady and quasi-steady approaches allowing for fast simulations.

Suggested Citation

  • Iván Castro-Fernández & Ricardo Borobia-Moreno & Rauno Cavallaro & Gonzalo Sánchez-Arriaga, 2021. "Three-Dimensional Unsteady Aerodynamic Analysis of a Rigid-Framed Delta Kite Applied to Airborne Wind Energy," Energies, MDPI, vol. 14(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8080-:d:693893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    2. Cherubini, Antonello & Papini, Andrea & Vertechy, Rocco & Fontana, Marco, 2015. "Airborne Wind Energy Systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1461-1476.
    3. Malz, E.C. & Koenemann, J. & Sieberling, S. & Gros, S., 2019. "A reference model for airborne wind energy systems for optimization and control," Renewable Energy, Elsevier, vol. 140(C), pages 1004-1011.
    4. Fechner, Uwe & van der Vlugt, Rolf & Schreuder, Edwin & Schmehl, Roland, 2015. "Dynamic model of a pumping kite power system," Renewable Energy, Elsevier, vol. 83(C), pages 705-716.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Jochem De Schutter & Rachel Leuthold & Thilo Bronnenmeyer & Elena Malz & Sebastien Gros & Moritz Diehl, 2023. "AWEbox : An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems," Energies, MDPI, vol. 16(4), pages 1-32, February.
    3. Malz, E.C. & Koenemann, J. & Sieberling, S. & Gros, S., 2019. "A reference model for airborne wind energy systems for optimization and control," Renewable Energy, Elsevier, vol. 140(C), pages 1004-1011.
    4. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    5. Malz, E.C. & Hedenus, F. & Göransson, L. & Verendel, V. & Gros, S., 2020. "Drag-mode airborne wind energy vs. wind turbines: An analysis of power production, variability and geography," Energy, Elsevier, vol. 193(C).
    6. van der Vlugt, Rolf & Bley, Anna & Noom, Michael & Schmehl, Roland, 2019. "Quasi-steady model of a pumping kite power system," Renewable Energy, Elsevier, vol. 131(C), pages 83-99.
    7. Salari, Mahdi Ebrahimi & Coleman, Joseph & Toal, Daniel, 2019. "Analysis of direct interconnection technique for offshore airborne wind energy systems under normal and fault conditions," Renewable Energy, Elsevier, vol. 131(C), pages 284-296.
    8. Tarek N. Dief & Uwe Fechner & Roland Schmehl & Shigeo Yoshida & Mostafa A. Rushdi, 2020. "Adaptive Flight Path Control of Airborne Wind Energy Systems," Energies, MDPI, vol. 13(3), pages 1-29, February.
    9. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    10. Johannes Alexander Müller & Mostafa Yasser Mostafa Khalil Elhashash & Volker Gollnick, 2022. "Electrical Launch Catapult and Landing Decelerator for Fixed-Wing Airborne Wind Energy Systems," Energies, MDPI, vol. 15(7), pages 1-19, March.
    11. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    12. Ali Arshad Uppal & Manuel C. R. M. Fernandes & Sérgio Vinha & Fernando A. C. C. Fontes, 2021. "Cascade Control of the Ground Station Module of an Airborne Wind Energy System," Energies, MDPI, vol. 14(24), pages 1-25, December.
    13. Trevisi, Filippo & McWilliam, Michael & Gaunaa, Mac, 2021. "Configuration optimization and global sensitivity analysis of Ground-Gen and Fly-Gen Airborne Wind Energy Systems," Renewable Energy, Elsevier, vol. 178(C), pages 385-402.
    14. Mostafa A. Rushdi & Ahmad A. Rushdi & Tarek N. Dief & Amr M. Halawa & Shigeo Yoshida & Roland Schmehl, 2020. "Power Prediction of Airborne Wind Energy Systems Using Multivariate Machine Learning," Energies, MDPI, vol. 13(9), pages 1-23, May.
    15. Luís Tiago Paiva & Fernando A. C. C. Fontes, 2018. "Optimal Control Algorithms with Adaptive Time-Mesh Refinement for Kite Power Systems," Energies, MDPI, vol. 11(3), pages 1-17, February.
    16. Liu, Zhe & Zhao, Yi & Zhou, Yuerong & Guan, Faming, 2020. "Modeling, simulation and test results analysis of tethered undersea kite based on bead model," Renewable Energy, Elsevier, vol. 154(C), pages 1314-1326.
    17. Mahdi Ebrahimi Salari & Joseph Coleman & Daniel Toal, 2018. "Power Control of Direct Interconnection Technique for Airborne Wind Energy Systems," Energies, MDPI, vol. 11(11), pages 1-17, November.
    18. Galym B. Teleuyev & Oksana V. Akulich & Marsel A. Kadyrov & Andrey A. Ponomarev & Elnur L. Hasanov, 2017. "Problems of Legal Regulation for Use and Development of Renewable Energy Sources in the Republic of Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 7(5), pages 296-301.
    19. Arslan Saleem & Muhammad Saeed & Man-Hoe Kim, 2022. "Optimisation of Induced Steam Residual Moisture Content in a Clothing Conditioner Based on a Genetic Algorithm," Energies, MDPI, vol. 15(15), pages 1-22, August.
    20. Gupta, Sowmya & Rajhans, Chinmay & Duttagupta, Siddhartha P. & Mitra, Mira, 2021. "Hybrid energy design for lighter than air systems," Renewable Energy, Elsevier, vol. 173(C), pages 781-794.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8080-:d:693893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.