IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v3y2018i4p55-d186225.html
   My bibliography  Save this article

Transcriptional Profiles of Secondary Metabolite Biosynthesis Genes and Cytochromes in the Leaves of Four Papaver Species

Author

Listed:
  • Dowan Kim

    (Genomics Division, National Institute of Agricultural Science, RDA, 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 54874, Korea
    These authors contributed equally to this study.)

  • Myunghee Jung

    (Research and Development Center, Insilicogen Inc., Yongin-si, Gyeonggi-do 16954, Korea
    Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
    These authors contributed equally to this study.)

  • In Jin Ha

    (Korean Medicine Clinical Trial Center (K-CTC), Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea)

  • Min Young Lee

    (Korean Medicine Clinical Trial Center (K-CTC), Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea)

  • Seok-Geun Lee

    (Korean Medicine Clinical Trial Center (K-CTC), Kyung Hee University Korean Medicine Hospital, Seoul 02447, Korea
    KHU-KIST Department of Converging Science & Technology, Kyung Hee University, Seoul 02447, Korea)

  • Younhee Shin

    (Research and Development Center, Insilicogen Inc., Yongin-si, Gyeonggi-do 16954, Korea
    Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea)

  • Sathiyamoorthy Subramaniyam

    (Research and Development Center, Insilicogen Inc., Yongin-si, Gyeonggi-do 16954, Korea)

  • Jaehyeon Oh

    (Genomics Division, National Institute of Agricultural Science, RDA, 370, Nongsaengmyeong-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 54874, Korea)

Abstract

Poppies are well-known plants in the family Papaveraceae that are rich in alkaloids. This family contains 61 species, and in this study we sequenced the transcriptomes of four species’ ( Papaver rhoeas , Papaver nudicaule , Papaver fauriei , and Papaver somniferum ) leaves. These transcripts were systematically assessed for the expression of secondary metabolite biosynthesis (SMB) genes and cytochromes, and their expression profiles were assessed for use in bioinformatics analyses. This study contributed 265 Gb (13 libraries with three biological replicates) of leaf transcriptome data from three Papaver plant developmental stages. Sequenced transcripts were assembled into 815 Mb of contigs, including 226 Mb of full-length transcripts. The transcripts for 53 KEGG pathways, 55 cytochrome superfamilies, and benzylisoquinoline alkaloid biosynthesis (BIA) were identified and compared to four other alkaloid-rich genomes. Additionally, 22 different alkaloids and their relative expression profiles in three developmental stages of Papaver species were assessed by targeted metabolomics using LC-QTOF-MS/MS. Collectively, the results are given in co-occurrence heat-maps to help researchers obtain an overview of the transcripts and their differential expression in the Papaver development life cycle, particularly in leaves. Moreover, this dataset will be a valuable resource to derive hypotheses to mitigate an array of Papaver developmental and secondary metabolite biosynthesis issues in the future.

Suggested Citation

  • Dowan Kim & Myunghee Jung & In Jin Ha & Min Young Lee & Seok-Geun Lee & Younhee Shin & Sathiyamoorthy Subramaniyam & Jaehyeon Oh, 2018. "Transcriptional Profiles of Secondary Metabolite Biosynthesis Genes and Cytochromes in the Leaves of Four Papaver Species," Data, MDPI, vol. 3(4), pages 1-15, November.
  • Handle: RePEc:gam:jdataj:v:3:y:2018:i:4:p:55-:d:186225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/3/4/55/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/3/4/55/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean R Eddy, 2011. "Accelerated Profile HMM Searches," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    2. Yanran Li & Christina D. Smolke, 2016. "Engineering biosynthesis of the anticancer alkaloid noscapine in yeast," Nature Communications, Nature, vol. 7(1), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngaam J Cheung & Wookyung Yu, 2018. "De novo protein structure prediction using ultra-fast molecular dynamics simulation," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-17, November.
    2. Ezequiel A Galpern & María I Freiberger & Diego U Ferreiro, 2020. "Large Ankyrin repeat proteins are formed with similar and energetically favorable units," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    3. Xing-Qi Huang & Renqiuguo Li & Jianxin Fu & Natalia Dudareva, 2022. "A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Amit A Upadhyay & Aaron D Fleetwood & Ogun Adebali & Robert D Finn & Igor B Zhulin, 2016. "Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-21, April.
    5. Samantha Petti & Sean R Eddy, 2022. "Constructing benchmark test sets for biological sequence analysis using independent set algorithms," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-14, March.
    6. Yongshuo Ma & Nian Liu & Per Greisen & Jingbo Li & Kangjian Qiao & Sanwen Huang & Gregory Stephanopoulos, 2022. "Removal of lycopene substrate inhibition enables high carotenoid productivity in Yarrowia lipolytica," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Yang Li & Chengxin Zhang & Eric W Bell & Wei Zheng & Xiaogen Zhou & Dong-Jun Yu & Yang Zhang, 2021. "Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    8. David Lee & Sayoni Das & Natalie L Dawson & Dragana Dobrijevic & John Ward & Christine Orengo, 2016. "Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-33, June.
    9. Dong-Hyun Kim & Hyun-Sik Yun & Young-Saeng Kim & Jong-Guk Kim, 2021. "Pollutant-Removing Biofilter Strains Associated with High Ammonia and Hydrogen Sulfide Removal Rate in a Livestock Wastewater Treatment Facility," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    10. Cuncong Zhong & Anna Edlund & Youngik Yang & Jeffrey S McLean & Shibu Yooseph, 2016. "Metagenome and Metatranscriptome Analyses Using Protein Family Profiles," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-22, July.
    11. Jaume Bonet & Sarah Wehrle & Karen Schriever & Che Yang & Anne Billet & Fabian Sesterhenn & Andreas Scheck & Freyr Sverrisson & Barbora Veselkova & Sabrina Vollers & Roxanne Lourman & Mélanie Villard , 2018. "Rosetta FunFolDes – A general framework for the computational design of functional proteins," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-30, November.
    12. Damiano Piovesan & Andras Hatos & Giovanni Minervini & Federica Quaglia & Alexander Miguel Monzon & Silvio C E Tosatto, 2020. "Assessing predictors for new post translational modification sites: A case study on hydroxylation," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-15, June.
    13. Balázs Szalkai & Ildikó Scheer & Kinga Nagy & Beáta G Vértessy & Vince Grolmusz, 2014. "The Metagenomic Telescope," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    14. Bilig Sod & Lei Xu & Yajiao Liu & Fei He & Yanchao Xu & Mingna Li & Tianhui Yang & Ting Gao & Junmei Kang & Qingchuan Yang & Ruicai Long, 2023. "Genome-Wide Identification and Expression Analysis of the CesA/Csl Gene Superfamily in Alfalfa ( Medicago sativa L.)," Agriculture, MDPI, vol. 13(9), pages 1-14, August.
    15. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    16. Marco Orlando & Patrick C F Buchholz & Marina Lotti & Jürgen Pleiss, 2021. "The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-30, October.
    17. Gerry Q Tonkin-Hill & Leily Trianty & Rintis Noviyanti & Hanh H T Nguyen & Boni F Sebayang & Daniel A Lampah & Jutta Marfurt & Simon A Cobbold & Janavi S Rambhatla & Malcolm J McConville & Stephen J R, 2018. "The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes," PLOS Biology, Public Library of Science, vol. 16(3), pages 1-40, March.
    18. Atul Kumar Upadhyay & Ramanathan Sowdhamini, 2016. "Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-20, July.
    19. Jianzhu Ma & Sheng Wang & Zhiyong Wang & Jinbo Xu, 2014. "MRFalign: Protein Homology Detection through Alignment of Markov Random Fields," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-12, March.
    20. Snehal Dilip Karpe & Vikas Tiwari & Sowdhamini Ramanathan, 2021. "InsectOR—Webserver for sensitive identification of insect olfactory receptor genes from non-model genomes," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:3:y:2018:i:4:p:55-:d:186225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.