IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i9p1658-d1222847.html
   My bibliography  Save this article

Genome-Wide Identification and Expression Analysis of the CesA/Csl Gene Superfamily in Alfalfa ( Medicago sativa L.)

Author

Listed:
  • Bilig Sod

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Lei Xu

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Yajiao Liu

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Fei He

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Yanchao Xu

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Mingna Li

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Tianhui Yang

    (Institute of Animal Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China)

  • Ting Gao

    (Institute of Animal Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China)

  • Junmei Kang

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Qingchuan Yang

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

  • Ruicai Long

    (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Abstract

The cellulose synthase ( CesA ) and cellulose synthase-like ( Csl ) superfamily encodes critical enzymes involved in processing plant cellulose and hemicellulosic polysaccharides. The alfalfa ( Medicago sativa L.) genome was sequenced in recent years, but this superfamily remains poorly understood at the genome-wide level. We identified 37 members of the CesA/Csl family from the alfalfa genome in this study as well as their chromosomal locations and synteny. We uncovered 28 CesA/Csl expressed across all tissues and CslD genes specifically expressed in the root. In addition, cis-acting element analysis showed that CesA/Csl contained several abiotic stress-related elements. Moreover, transcriptomic analysis of alfalfa seedlings demonstrated the involvement of this superfamily in responses to cold, drought, and salt stresses. Specifically, CslD increased expression in cold conditions and decreased under osmotic stress, highlighting its potential role in stress adaptation. The findings offer valuable information for the practical exploration of the functions of CesA/Csl during plant development and the development of enhanced tolerance to different stress conditions.

Suggested Citation

  • Bilig Sod & Lei Xu & Yajiao Liu & Fei He & Yanchao Xu & Mingna Li & Tianhui Yang & Ting Gao & Junmei Kang & Qingchuan Yang & Ruicai Long, 2023. "Genome-Wide Identification and Expression Analysis of the CesA/Csl Gene Superfamily in Alfalfa ( Medicago sativa L.)," Agriculture, MDPI, vol. 13(9), pages 1-14, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1658-:d:1222847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/9/1658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/9/1658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean R Eddy, 2011. "Accelerated Profile HMM Searches," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damiano Piovesan & Andras Hatos & Giovanni Minervini & Federica Quaglia & Alexander Miguel Monzon & Silvio C E Tosatto, 2020. "Assessing predictors for new post translational modification sites: A case study on hydroxylation," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-15, June.
    2. Balázs Szalkai & Ildikó Scheer & Kinga Nagy & Beáta G Vértessy & Vince Grolmusz, 2014. "The Metagenomic Telescope," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    3. Ngaam J Cheung & Wookyung Yu, 2018. "De novo protein structure prediction using ultra-fast molecular dynamics simulation," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-17, November.
    4. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    5. Marco Orlando & Patrick C F Buchholz & Marina Lotti & Jürgen Pleiss, 2021. "The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-30, October.
    6. Ezequiel A Galpern & María I Freiberger & Diego U Ferreiro, 2020. "Large Ankyrin repeat proteins are formed with similar and energetically favorable units," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    7. Gerry Q Tonkin-Hill & Leily Trianty & Rintis Noviyanti & Hanh H T Nguyen & Boni F Sebayang & Daniel A Lampah & Jutta Marfurt & Simon A Cobbold & Janavi S Rambhatla & Malcolm J McConville & Stephen J R, 2018. "The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes," PLOS Biology, Public Library of Science, vol. 16(3), pages 1-40, March.
    8. Atul Kumar Upadhyay & Ramanathan Sowdhamini, 2016. "Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-20, July.
    9. Jianzhu Ma & Sheng Wang & Zhiyong Wang & Jinbo Xu, 2014. "MRFalign: Protein Homology Detection through Alignment of Markov Random Fields," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-12, March.
    10. Snehal Dilip Karpe & Vikas Tiwari & Sowdhamini Ramanathan, 2021. "InsectOR—Webserver for sensitive identification of insect olfactory receptor genes from non-model genomes," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-15, January.
    11. Amit A Upadhyay & Aaron D Fleetwood & Ogun Adebali & Robert D Finn & Igor B Zhulin, 2016. "Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-21, April.
    12. Samantha Petti & Sean R Eddy, 2022. "Constructing benchmark test sets for biological sequence analysis using independent set algorithms," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-14, March.
    13. Yang Li & Chengxin Zhang & Eric W Bell & Wei Zheng & Xiaogen Zhou & Dong-Jun Yu & Yang Zhang, 2021. "Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    14. David Lee & Sayoni Das & Natalie L Dawson & Dragana Dobrijevic & John Ward & Christine Orengo, 2016. "Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-33, June.
    15. Dowan Kim & Myunghee Jung & In Jin Ha & Min Young Lee & Seok-Geun Lee & Younhee Shin & Sathiyamoorthy Subramaniyam & Jaehyeon Oh, 2018. "Transcriptional Profiles of Secondary Metabolite Biosynthesis Genes and Cytochromes in the Leaves of Four Papaver Species," Data, MDPI, vol. 3(4), pages 1-15, November.
    16. Dong-Hyun Kim & Hyun-Sik Yun & Young-Saeng Kim & Jong-Guk Kim, 2021. "Pollutant-Removing Biofilter Strains Associated with High Ammonia and Hydrogen Sulfide Removal Rate in a Livestock Wastewater Treatment Facility," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    17. Binqi Li & Muhammad Moaaz Ali & Tianxin Guo & Shariq Mahmood Alam & Shaista Gull & Junaid Iftikhar & Ahmed Fathy Yousef & Walid F. A. Mosa & Faxing Chen, 2022. "Genome-Wide Identification, In Silico Analysis and Expression Profiling of SWEET Gene Family in Loquat ( Eriobotrya japonica Lindl.)," Agriculture, MDPI, vol. 12(9), pages 1-17, August.
    18. William C Nelson & Emily B Graham & Alex R Crump & Sarah J Fansler & Evan V Arntzen & David W Kennedy & James C Stegen, 2020. "Distinct temporal diversity profiles for nitrogen cycling genes in a hyporheic microbiome," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    19. Cuncong Zhong & Anna Edlund & Youngik Yang & Jeffrey S McLean & Shibu Yooseph, 2016. "Metagenome and Metatranscriptome Analyses Using Protein Family Profiles," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-22, July.
    20. Jaume Bonet & Sarah Wehrle & Karen Schriever & Che Yang & Anne Billet & Fabian Sesterhenn & Andreas Scheck & Freyr Sverrisson & Barbora Veselkova & Sabrina Vollers & Roxanne Lourman & Mélanie Villard , 2018. "Rosetta FunFolDes – A general framework for the computational design of functional proteins," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1658-:d:1222847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.