IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007967.html
   My bibliography  Save this article

Assessing predictors for new post translational modification sites: A case study on hydroxylation

Author

Listed:
  • Damiano Piovesan
  • Andras Hatos
  • Giovanni Minervini
  • Federica Quaglia
  • Alexander Miguel Monzon
  • Silvio C E Tosatto

Abstract

Post-translational modification (PTM) sites have become popular for predictor development. However, with the exception of phosphorylation and a handful of other examples, PTMs suffer from a limited number of available training examples and sparsity in protein sequences. Here, proline hydroxylation is taken as an example to compare different methods and evaluate their performance on new experimentally determined sites. As a guide for effective experimental design, predictors require both high specificity and sensitivity. However, the self-reported performance may often not be indicative of prediction quality and detection of new sites is not guaranteed. We have benchmarked seven published hydroxylation site predictors on two newly constructed independent datasets. The self-reported performance is found to widely overestimate the real accuracy measured on independent datasets. No predictor performs better than random on new examples, indicating the refined models do not sufficiently generalize to detect new sites. The number of false positives is high and precision low, in particular for non-collagen proteins whose motifs are not conserved. As hydroxylation site predictors do not generalize for new data, caution is advised when using PTM predictors in the absence of independent evaluations, in particular for highly specific sites involved in signalling.Author summary: Machine learning methods are extensively used by biologists to design and interpret experiments. Predictors which take the only sequence as input are of particular interest due to the large amount of available sequence data and high self-reported performance. In this work, we evaluated post-translational modification (PTM) predictors for hydroxylation sites and found that they perform no better than random, in strong contrast to performances reported in their original publications. PTMs are chemical amino acid alterations providing the cell with conditional mechanisms to fine tune protein function, regulating complex biological processes such as signalling and cell cycle. Hydroxylation sites are a good PTM test case due to the availability of a range of predictors and an abundance of newly experimentally detected modification sites. Poor performances in our results highlight the overlooked problem of predicting PTMs when best practices are not followed and training data are likely incomplete. Experimentalists should be careful when using PTM predictors blindly and more independent assessments are needed to establish their usefulness in practice.

Suggested Citation

  • Damiano Piovesan & Andras Hatos & Giovanni Minervini & Federica Quaglia & Alexander Miguel Monzon & Silvio C E Tosatto, 2020. "Assessing predictors for new post translational modification sites: A case study on hydroxylation," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-15, June.
  • Handle: RePEc:plo:pcbi00:1007967
    DOI: 10.1371/journal.pcbi.1007967
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007967
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007967&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007967?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Le-Le Hu & Shen Niu & Tao Huang & Kai Wang & Xiao-He Shi & Yu-Dong Cai, 2010. "Prediction and Analysis of Protein Hydroxyproline and Hydroxylysine," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    2. Sean R Eddy, 2011. "Accelerated Profile HMM Searches," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoyang Zou & Yang Zou & Chenglong Ma & Jiaojiao Zhao & Lei Li, 2021. "Development of an experiment-split method for benchmarking the generalization of a PTM site predictor: Lysine methylome as an example," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balázs Szalkai & Ildikó Scheer & Kinga Nagy & Beáta G Vértessy & Vince Grolmusz, 2014. "The Metagenomic Telescope," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.
    2. Ngaam J Cheung & Wookyung Yu, 2018. "De novo protein structure prediction using ultra-fast molecular dynamics simulation," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-17, November.
    3. Bilig Sod & Lei Xu & Yajiao Liu & Fei He & Yanchao Xu & Mingna Li & Tianhui Yang & Ting Gao & Junmei Kang & Qingchuan Yang & Ruicai Long, 2023. "Genome-Wide Identification and Expression Analysis of the CesA/Csl Gene Superfamily in Alfalfa ( Medicago sativa L.)," Agriculture, MDPI, vol. 13(9), pages 1-14, August.
    4. Alejandro Ochoa & John D Storey & Manuel Llinás & Mona Singh, 2015. "Beyond the E-Value: Stratified Statistics for Protein Domain Prediction," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-21, November.
    5. Marco Orlando & Patrick C F Buchholz & Marina Lotti & Jürgen Pleiss, 2021. "The GH19 Engineering Database: Sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-30, October.
    6. Ezequiel A Galpern & María I Freiberger & Diego U Ferreiro, 2020. "Large Ankyrin repeat proteins are formed with similar and energetically favorable units," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    7. Gerry Q Tonkin-Hill & Leily Trianty & Rintis Noviyanti & Hanh H T Nguyen & Boni F Sebayang & Daniel A Lampah & Jutta Marfurt & Simon A Cobbold & Janavi S Rambhatla & Malcolm J McConville & Stephen J R, 2018. "The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen–encoding var genes," PLOS Biology, Public Library of Science, vol. 16(3), pages 1-40, March.
    8. Atul Kumar Upadhyay & Ramanathan Sowdhamini, 2016. "Genome-Wide Prediction and Analysis of 3D-Domain Swapped Proteins in the Human Genome from Sequence Information," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-20, July.
    9. Jianzhu Ma & Sheng Wang & Zhiyong Wang & Jinbo Xu, 2014. "MRFalign: Protein Homology Detection through Alignment of Markov Random Fields," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-12, March.
    10. Snehal Dilip Karpe & Vikas Tiwari & Sowdhamini Ramanathan, 2021. "InsectOR—Webserver for sensitive identification of insect olfactory receptor genes from non-model genomes," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-15, January.
    11. Amit A Upadhyay & Aaron D Fleetwood & Ogun Adebali & Robert D Finn & Igor B Zhulin, 2016. "Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-21, April.
    12. Samantha Petti & Sean R Eddy, 2022. "Constructing benchmark test sets for biological sequence analysis using independent set algorithms," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-14, March.
    13. Yang Li & Chengxin Zhang & Eric W Bell & Wei Zheng & Xiaogen Zhou & Dong-Jun Yu & Yang Zhang, 2021. "Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-19, March.
    14. David Lee & Sayoni Das & Natalie L Dawson & Dragana Dobrijevic & John Ward & Christine Orengo, 2016. "Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-33, June.
    15. Dowan Kim & Myunghee Jung & In Jin Ha & Min Young Lee & Seok-Geun Lee & Younhee Shin & Sathiyamoorthy Subramaniyam & Jaehyeon Oh, 2018. "Transcriptional Profiles of Secondary Metabolite Biosynthesis Genes and Cytochromes in the Leaves of Four Papaver Species," Data, MDPI, vol. 3(4), pages 1-15, November.
    16. Dong-Hyun Kim & Hyun-Sik Yun & Young-Saeng Kim & Jong-Guk Kim, 2021. "Pollutant-Removing Biofilter Strains Associated with High Ammonia and Hydrogen Sulfide Removal Rate in a Livestock Wastewater Treatment Facility," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    17. Binqi Li & Muhammad Moaaz Ali & Tianxin Guo & Shariq Mahmood Alam & Shaista Gull & Junaid Iftikhar & Ahmed Fathy Yousef & Walid F. A. Mosa & Faxing Chen, 2022. "Genome-Wide Identification, In Silico Analysis and Expression Profiling of SWEET Gene Family in Loquat ( Eriobotrya japonica Lindl.)," Agriculture, MDPI, vol. 12(9), pages 1-17, August.
    18. William C Nelson & Emily B Graham & Alex R Crump & Sarah J Fansler & Evan V Arntzen & David W Kennedy & James C Stegen, 2020. "Distinct temporal diversity profiles for nitrogen cycling genes in a hyporheic microbiome," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-19, January.
    19. Cuncong Zhong & Anna Edlund & Youngik Yang & Jeffrey S McLean & Shibu Yooseph, 2016. "Metagenome and Metatranscriptome Analyses Using Protein Family Profiles," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-22, July.
    20. Jaume Bonet & Sarah Wehrle & Karen Schriever & Che Yang & Anne Billet & Fabian Sesterhenn & Andreas Scheck & Freyr Sverrisson & Barbora Veselkova & Sabrina Vollers & Roxanne Lourman & Mélanie Villard , 2018. "Rosetta FunFolDes – A general framework for the computational design of functional proteins," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-30, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.