IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v2y2017i1p8-d88768.html
   My bibliography  Save this article

An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data

Author

Listed:
  • Yuzhe Liu

    (Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15260, USA
    Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15260, USA)

  • Vanathi Gopalakrishnan

    (Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15260, USA
    Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
    Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
    Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260, USA)

Abstract

Many clinical research datasets have a large percentage of missing values that directly impacts their usefulness in yielding high accuracy classifiers when used for training in supervised machine learning. While missing value imputation methods have been shown to work well with smaller percentages of missing values, their ability to impute sparse clinical research data can be problem specific. We previously attempted to learn quantitative guidelines for ordering cardiac magnetic resonance imaging during the evaluation for pediatric cardiomyopathy, but missing data significantly reduced our usable sample size. In this work, we sought to determine if increasing the usable sample size through imputation would allow us to learn better guidelines. We first review several machine learning methods for estimating missing data. Then, we apply four popular methods (mean imputation, decision tree, k-nearest neighbors, and self-organizing maps) to a clinical research dataset of pediatric patients undergoing evaluation for cardiomyopathy. Using Bayesian Rule Learning (BRL) to learn ruleset models, we compared the performance of imputation-augmented models versus unaugmented models. We found that all four imputation-augmented models performed similarly to unaugmented models. While imputation did not improve performance, it did provide evidence for the robustness of our learned models.

Suggested Citation

  • Yuzhe Liu & Vanathi Gopalakrishnan, 2017. "An Overview and Evaluation of Recent Machine Learning Imputation Methods Using Cardiac Imaging Data," Data, MDPI, vol. 2(1), pages 1-15, January.
  • Handle: RePEc:gam:jdataj:v:2:y:2017:i:1:p:8-:d:88768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/2/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/2/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadaf Kabir & Leily Farrokhvar, 2022. "Non-linear missing data imputation for healthcare data via index-aware autoencoders," Health Care Management Science, Springer, vol. 25(3), pages 484-497, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    2. Bian, Yuan & Yi, Grace Y. & He, Wenqing, 2024. "A unified framework of analyzing missing data and variable selection using regularized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    3. Kott Phillip S. & Liao Dan, 2018. "Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)," Journal of Official Statistics, Sciendo, vol. 34(1), pages 107-120, March.
    4. Marco Doretti & Sara Geneletti & Elena Stanghellini, 2018. "Missing Data: A Unified Taxonomy Guided by Conditional Independence," International Statistical Review, International Statistical Institute, vol. 86(2), pages 189-204, August.
    5. Hairu Wang & Zhiping Lu & Yukun Liu, 2023. "Score test for missing at random or not under logistic missingness models," Biometrics, The International Biometric Society, vol. 79(2), pages 1268-1279, June.
    6. Andrew T. Karl & Yan Yang & Sharon L. Lohr, 2013. "A Correlated Random Effects Model for Nonignorable Missing Data in Value-Added Assessment of Teacher Effects," Journal of Educational and Behavioral Statistics, , vol. 38(6), pages 577-603, December.
    7. Rianne Margaretha Schouten & Gerko Vink, 2021. "The Dance of the Mechanisms: How Observed Information Influences the Validity of Missingness Assumptions," Sociological Methods & Research, , vol. 50(3), pages 1243-1258, August.
    8. Daniel, Rhian M. & Kenward, Michael G., 2012. "A method for increasing the robustness of multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1624-1643.
    9. Janicki, Ryan & Malec, Donald, 2013. "A Bayesian model averaging approach to analyzing categorical data with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 600-614.
    10. Yuan, Ke-Hai, 2009. "Normal distribution based pseudo ML for missing data: With applications to mean and covariance structure analysis," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1900-1918, October.
    11. Margarita Moreno-Betancur & Grégoire Rey & Aurélien Latouche, 2015. "Direct likelihood inference and sensitivity analysis for competing risks regression with missing causes of failure," Biometrics, The International Biometric Society, vol. 71(2), pages 498-507, June.
    12. Yuriko Takeda & Toshihiro Misumi & Kouji Yamamoto, 2022. "Joint Models for Incomplete Longitudinal Data and Time-to-Event Data," Mathematics, MDPI, vol. 10(19), pages 1-7, October.
    13. Roula Tsonaka & Dimitris Rizopoulos & Geert Verbeke & Emmanuel Lesaffre, 2010. "Nonignorable Models for Intermittently Missing Categorical Longitudinal Responses," Biometrics, The International Biometric Society, vol. 66(3), pages 834-844, September.
    14. Trias Wahyuni Rakhmawati & Geert Molenberghs & Geert Verbeke & Christel Faes, 2016. "Local influence diagnostics for incomplete overdispersed longitudinal counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1722-1737, July.
    15. Maria Marino & Marco Alfó, 2015. "Latent drop-out based transitions in linear quantile hidden Markov models for longitudinal responses with attrition," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 483-502, December.
    16. Bunouf, Pierre & Molenberghs, Geert & Grouin, Jean-Marie & Thijs, Herbert, 2015. "A SAS Program Combining R Functionalities to Implement Pattern-Mixture Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i08).
    17. Christos Thomadakis & Loukia Meligkotsidou & Nikos Pantazis & Giota Touloumi, 2019. "Longitudinal and time‐to‐drop‐out joint models can lead to seriously biased estimates when the drop‐out mechanism is at random," Biometrics, The International Biometric Society, vol. 75(1), pages 58-68, March.
    18. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    19. Yordan P Raykov & Alexis Boukouvalas & Fahd Baig & Max A Little, 2016. "What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-28, September.
    20. Hines, R.J. O'Hara & Hines, W.G.S., 2010. "Indices for covariance mis-specification in longitudinal data analysis with no missing responses and with MAR drop-outs," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 806-815, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:2:y:2017:i:1:p:8-:d:88768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.