IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v10y2025i1p9-d1566429.html
   My bibliography  Save this article

Credit Evaluation of Technology-Based Small and Micro Enterprises: An Innovative Weighting Method Based on Machine Learning and AHP

Author

Listed:
  • Bingya Wu

    (School of Information Technology, Zhejiang Financial College, Hangzhou 310018, China)

  • Zhihui Hu

    (School of Economics and Management, Zhejiang University of Science and Technology, Hangzhou 310023, China)

  • Zhouyi Gu

    (School of Information Technology, Zhejiang Financial College, Hangzhou 310018, China)

  • Yuxi Zheng

    (School of Information Technology, Zhejiang Financial College, Hangzhou 310018, China)

  • Jiayan Lv

    (Library, Huzhou University, Huzhou 313000, China)

Abstract

Technology-based small and micro enterprises play a crucial role in national economic and social development. Managing their credit risk effectively is key to ensuring their healthy growth. This study is based on corporate credit management theory and Wu’s three-dimensional credit theory. It clarifies the credit concept and measurement logic of these enterprises, considering their unique development characteristics in China. A credit evaluation system is constructed, and an innovative method combining machine learning with comprehensive evaluation is proposed. This approach aims to assess the credit status of technology-based small and micro enterprises in a thorough and objective manner. The study finds that, first, the credit level of these enterprises is currently moderate, with little variation. Second, financial information remains a key factor in credit evaluation. Third, the ML-AHP (Machine Learning-Analytic Hierarchy Process) combined weighting method effectively integrates subjective experience with objective data, providing a more rational assessment. The findings provide theoretical references and practical guidance for the healthy development of technology-based small and micro enterprises, early credit risk warning, and improved financing efficiency.

Suggested Citation

  • Bingya Wu & Zhihui Hu & Zhouyi Gu & Yuxi Zheng & Jiayan Lv, 2025. "Credit Evaluation of Technology-Based Small and Micro Enterprises: An Innovative Weighting Method Based on Machine Learning and AHP," Data, MDPI, vol. 10(1), pages 1-21, January.
  • Handle: RePEc:gam:jdataj:v:10:y:2025:i:1:p:9-:d:1566429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/10/1/9/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/10/1/9/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fidrmuc, Jarko & Hainz, Christa, 2010. "Default rates in the loan market for SMEs: Evidence from Slovakia," Economic Systems, Elsevier, vol. 34(2), pages 133-147, June.
    2. WeiMing Mou & Wing-Keung Wong & Michael McAleer, 2018. "Financial Credit Risk Evaluation Based on Core Enterprise Supply Chains," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    3. Fang, Guanfu & Gao, Tiantian & He, Huanlang & Sun, Qian, 2023. "Public credit information arrangements and entrepreneurship: Evidence from China," China Economic Review, Elsevier, vol. 81(C).
    4. Jiang, Cuiqing & Yin, Chang & Tang, Qian & Wang, Zhao, 2023. "The value of official website information in the credit risk evaluation of SMEs," Journal of Business Research, Elsevier, vol. 169(C).
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    6. Lisa Crosato & Josep Domenech & Caterina Liberati, 2024. "Websites’ data: a new asset for enhancing credit risk modeling," Annals of Operations Research, Springer, vol. 342(3), pages 1671-1686, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    2. Jarko Fidrmuc & Pavel Ciaian & d'Artis Kancs & Jan Pokrivcak, 2013. "Credit Constraints, Heterogeneous Firms and Loan Defaults," Annals of Economics and Finance, Society for AEF, vol. 14(1), pages 53-68, May.
    3. Martina Lawless & Fergal McCann, 2013. "Determinants of Default: Evidence from a Sector-level Panel of Irish SME Loans," The Economic and Social Review, Economic and Social Studies, vol. 44(4), pages 473-488.
    4. Dmytro Kovalenko & Olga Afanasieva & Nani Zabuta & Tetiana Boiko & Rosen Rosenov Baltov, 2021. "Model of Assessing the Overdue Debts in a Commercial Bank Using Neuro-Fuzzy Technologies," JRFM, MDPI, vol. 14(5), pages 1-20, May.
    5. Ferreira-Filho, Joaquim Bento de Souza & Horridge, Mark, 2010. "Climate Change Impacts on Agriculture and Internal Migrations in Brazil," Conference papers 331926, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2011. "Modelling credit risk for innovative firms: the role of innovation measures," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0025, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    7. Ao Yu & Zhuoqiang Jia & Weike Zhang & Ke Deng & Francisco Herrera, 2020. "A Dynamic Credit Index System for TSMEs in China Using the Delphi and Analytic Hierarchy Process (AHP) Methods," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    8. Emilia Bonaccorsi di Patti & Alessio D’Ignazio & Marco Gallo & Giacinto Micucci, 2015. "The Role of Leverage in Firm Solvency: Evidence From Bank Loans," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(2), pages 253-286, July.
    9. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    10. Fantazzini, Dean & DeGiuli, Maria Elena & Figini, Silvia & Giudici, Paolo, 2009. "Enhanced credit default models for heterogeneous SME segments," Journal of Financial Transformation, Capco Institute, vol. 25, pages 31-39.
    11. Carmen Gallucci & Rosalia Santullli & Michele Modina & Vincenzo Formisano, 2023. "Financial ratios, corporate governance and bank-firm information: a Bayesian approach to predict SMEs’ default," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(3), pages 873-892, September.
    12. Ekaterina Tzvetanova, 2019. "Adaptation of the Altman’s Corporate Insolvency Prediction Model – The Bulgarian Case," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 125-142.
    13. Mohammad S. Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib, 2022. "Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3713-3729, July.
    14. McCann, Fergal & McIndoe-Calder, Tara, 2012. "Determinants of SME Loan Default: The Importance of Borrower-Level Heterogeneity," Research Technical Papers 06/RT/12, Central Bank of Ireland.
    15. Neagu, Florian & Tatarici, Luminița & Dragu, Florin & Stamate, Amalia, 2024. "Are green loans less risky? Micro-evidence from a European Emerging Economy," Journal of Financial Stability, Elsevier, vol. 70(C).
    16. Yuetong Zhao & Deqin Lin, 2023. "Prediction of Micro- and Small-Sized Enterprise Default Risk Based on a Logistic Model: Evidence from a Bank of China," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    17. Barbara Su, 2023. "Banking practices and borrowing firms’ financial reporting quality: evidence from bank cross-selling," Review of Accounting Studies, Springer, vol. 28(1), pages 201-236, March.
    18. Stephen Brown & William Goetzmann & Bing Liang & Christopher Schwarz, 2008. "Mandatory Disclosure and Operational Risk: Evidence from Hedge Fund Registration," Journal of Finance, American Finance Association, vol. 63(6), pages 2785-2815, December.
    19. Shaikh, Ibrahim A. & O'Brien, Jonathan Paul & Peters, Lois, 2018. "Inside directors and the underinvestment of financial slack towards R&D-intensity in high-technology firms," Journal of Business Research, Elsevier, vol. 82(C), pages 192-201.
    20. Mikel Bedayo & Raquel Vegas & Gabriel Jiménez & José-Luis Peydró, 2020. "Screening and Loan Origination Time: Lending Standards, Loan Defaults and Bank Failures," Working Papers 1215, Barcelona School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:10:y:2025:i:1:p:9-:d:1566429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.