IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4097-d1078607.html
   My bibliography  Save this article

Prediction of Micro- and Small-Sized Enterprise Default Risk Based on a Logistic Model: Evidence from a Bank of China

Author

Listed:
  • Yuetong Zhao

    (Institute for Research on Portuguese-Speaking Countries, City University of Macau, Macau 999078, China)

  • Deqin Lin

    (Faculty of Finance, City University of Macau, Macau 999078, China)

Abstract

This study selected factors influencing the default risk of micro- and small-sized enterprises (MSEs) from the perspective of both financial and non-financial indicators and constructed an identification model of the influencing factors for the default risk of MSEs by logistic regression, using the data on loans borrowed by 2492 MSEs from a city commercial bank in Gansu Province as the sample. In addition, the robustness and prediction effect of the model were tested. The empirical results showed that the logistic model has good robustness and high predictive ability. The quick ratio, total asset turnover, return on net assets, sales growth rate and total assets growth rate had significant negative impacts on the default risk for the loans taken out by MSEs; the loan maturity and loan amount had remarkable positive impacts on the default risk; non-financial indicators (e.g., the nature of the enterprise, method of obtaining the loan and educational background of the person in charge) had significant impacts on the default risk. Based on the results, this manuscript provides solutions to address the default risk of MSEs and makes suggestions from the perspectives of database building, full-cycle management and dynamic assessment of guarantee capacity.

Suggested Citation

  • Yuetong Zhao & Deqin Lin, 2023. "Prediction of Micro- and Small-Sized Enterprise Default Risk Based on a Logistic Model: Evidence from a Bank of China," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4097-:d:1078607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Glennon, Dennis & Nigro, Peter, 2005. "Measuring the Default Risk of Small Business Loans: A Survival Analysis Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(5), pages 923-947, October.
    2. Zhang, Xuan & Zhao, Yang & Yao, Xiao, 2022. "Forecasting corporate default risk in China," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1054-1070.
    3. Fidrmuc, Jarko & Hainz, Christa, 2010. "Default rates in the loan market for SMEs: Evidence from Slovakia," Economic Systems, Elsevier, vol. 34(2), pages 133-147, June.
    4. Akoten, John E & Sawada, Yasuyuki & Otsuka, Keijiro, 2006. "The Determinants of Credit Access and Its Impacts on Micro and Small Enterprises: The Case of Garment Producers in Kenya," Economic Development and Cultural Change, University of Chicago Press, vol. 54(4), pages 927-944, July.
    5. Yu, Jian & Peng, Fanjia & Shi, Xunpeng & Yang, Longjian, 2022. "Impact of credit guarantee on firm performance: Evidence from China’s SMEs," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 624-636.
    6. Liu Yang & Youtang Zhang, 2020. "Digital Financial Inclusion and Sustainable Growth of Small and Micro Enterprises—Evidence Based on China’s New Third Board Market Listed Companies," Sustainability, MDPI, vol. 12(9), pages 1-21, May.
    7. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    8. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    9. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    10. Lean Yu & Rongtian Zhou & Rongda Chen & Kin Keung Lai, 2022. "Missing Data Preprocessing in Credit Classification: One-Hot Encoding or Imputation?," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 58(2), pages 472-482, January.
    11. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    12. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    13. Wan, Junmin, 2018. "Non-performing loans and housing prices in China," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 26-42.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Egor O. Bukharin & Sofia I. Mangileva & Vladislav V. Afanasev, 2024. "Default Prediction for Russian Food Service Firms: Contribution of Non-Financial Factors and Machine Learning," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(1), pages 206-226.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiara Pederzoli & Grid Thoma & Costanza Torricelli, 2013. "Modelling Credit Risk for Innovative SMEs: the Role of Innovation Measures," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 111-129, August.
    2. Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
    3. Ilyes Abid & Farid Mkaouar & Olfa Kaabia, 2018. "Dynamic analysis of the forecasting bankruptcy under presence of unobserved heterogeneity," Annals of Operations Research, Springer, vol. 262(2), pages 241-256, March.
    4. So Sohn & Yoon Kim, 2013. "Behavioral credit scoring model for technology-based firms that considers uncertain financial ratios obtained from relationship banking," Small Business Economics, Springer, vol. 41(4), pages 931-943, December.
    5. Jie Sun, 2012. "Integration Of Random Sample Selection, Support Vector Machines And Ensembles For Financial Risk Forecasting With An Empirical Analysis On The Necessity Of Feature Selection," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 229-246, October.
    6. Mohammad S. Uddin & Guotai Chi & Mazin A. M. Al Janabi & Tabassum Habib, 2022. "Leveraging random forest in micro‐enterprises credit risk modelling for accuracy and interpretability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3713-3729, July.
    7. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    8. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    9. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    10. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    11. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    12. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    13. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    14. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    15. Maria H. Kim & Graham Partington, 2015. "Dynamic forecasts of financial distress of Australian firms," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 135-160, February.
    16. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    17. Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
    18. Lillian Cheung & Amnon Levy, 1998. "An integrative analysis of business bankruptcy in Australia," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 22(2), pages 149-167, June.
    19. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    20. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Forecast bankruptcy using a blend of clustering and MARS model - Case of US banks," Post-Print halshs-01314553, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4097-:d:1078607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.