IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2024i4p66-1406d1498019.html
   My bibliography  Save this article

Metal Oxalates as a CO 2 Solid State Reservoir: The Carbon Capture Reaction

Author

Listed:
  • Linda Pastero

    (Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy
    NIS Interdepartmental Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via Quarello 16, 10135 Torino, Italy)

  • Vittorio Barella

    (Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy)

  • Enrico Allais

    (Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy)

  • Marco Pazzi

    (Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy)

  • Fabrizio Sordello

    (Dipartimento di Chimica, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy)

  • Quentin Wehrung

    (Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy)

  • Alessandro Pavese

    (Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, 10125 Torino, Italy
    NIS Interdepartmental Centre for Nanostructured Interfaces and Surfaces, Università degli Studi di Torino, Via Quarello 16, 10135 Torino, Italy)

Abstract

To maintain the carbon dioxide concentration below the no-return threshold for climate change, we must consider the reduction in anthropic emissions coupled to carbon capture methods applied in synergy. In our recent papers, we proposed a green and reliable method for carbon mineralization using ascorbic acid aqueous solution as the reducing agent for carbon (IV) to carbon (III), thus obtaining oxalic acid exploiting green reagents. Oxalic acid is made to mineralize as calcium (as the model cation) oxalate. Oxalates are solid-state reservoirs suitable for long-term carbon storage or carbon feedstock for manufacturing applications. The carbon mineralization reaction is a double-step process (carbon reduction and oxalate precipitation), and the carbon capture efficiency is invariably represented by a double-slope curve we formerly explained as a decrease in the reducing effectiveness of ascorbic acid during reaction. In the present paper, we demonstrated that the reaction proceeds via a “pure CO 2 -capture” stage in which ascorbic acid oxidizes into dehydroascorbic acid and carbon (IV) reduces to carbon (III) and a “mixed” stage in which the redox reaction competes with the degradation of ascorbic acid in producing oxalic acid. Despite the irreversibility of the reduction reaction, that was demonstrated in abiotic conditions, the analysis of costs according to the market price of the reagents endorses the application of the method.

Suggested Citation

  • Linda Pastero & Vittorio Barella & Enrico Allais & Marco Pazzi & Fabrizio Sordello & Quentin Wehrung & Alessandro Pavese, 2024. "Metal Oxalates as a CO 2 Solid State Reservoir: The Carbon Capture Reaction," Clean Technol., MDPI, vol. 6(4), pages 1-18, October.
  • Handle: RePEc:gam:jcltec:v:6:y:2024:i:4:p:66-1406:d:1498019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/4/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/4/66/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dri, Marco & Sanna, Aimaro & Maroto-Valer, M. Mercedes, 2014. "Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products," Applied Energy, Elsevier, vol. 113(C), pages 515-523.
    2. Barzagli, Francesco & Giorgi, Claudia & Mani, Fabrizio & Peruzzini, Maurizio, 2018. "Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: A comparative analysis carried out by 13C NMR spectroscopy," Applied Energy, Elsevier, vol. 220(C), pages 208-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
    2. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    3. Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
    4. Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
    5. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    6. Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
    7. Yin, Xin & Shen, Shufeng, 2023. "Water-lean monophasic absorbents containing secondary alkanolamines and dimethyl sulfoxide for energy-efficient CO2 capture," Energy, Elsevier, vol. 281(C).
    8. Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
    9. Quentin Wehrung & Enrico Destefanis & Caterina Caviglia & Davide Bernasconi & Linda Pastero & Marco Bruno & Andrea Bernasconi & Alex Magnetti Vernai & Alice Di Rienzo & Alessandro Pavese, 2023. "Experimental Modeling of CO 2 Sorption/Desorption Cycle with MDEA/PZ Blend: Kinetics and Regeneration Temperature," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    10. Zhou, Xiaobin & Jing, Guohua & Lv, Bihong & Liu, Fan & Zhou, Zuoming, 2019. "Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol," Applied Energy, Elsevier, vol. 235(C), pages 379-390.
    11. Meng, Fanli & Fu, Kun & Wang, Xueli & Ye, Bonan & Zhang, Pan & Wang, Lemeng & Fu, Dong, 2024. "Performance of a new water lean absorbent composed of EHA and DEGDEE in CO2 capture and regeneration," Energy, Elsevier, vol. 304(C).
    12. Chen, Qiuju & Ding, Wenjin & Sun, Hongjuan & Peng, Tongjiang, 2019. "Mineral carbonation of yellow phosphorus slag and characterization of carbonated product," Energy, Elsevier, vol. 188(C).
    13. Yafei Zhao & Ken-ichi Itakura, 2023. "A State-of-the-Art Review on Technology for Carbon Utilization and Storage," Energies, MDPI, vol. 16(10), pages 1-22, May.
    14. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    15. Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
    16. Fu, Kun & Zheng, Mingzhen & Wang, Haijie & Fu, Dong, 2022. "Effect of water content on the characteristics of CO2 capture processes in absorbents of 2-ethylhexan-1-amine + diglyme," Energy, Elsevier, vol. 244(PA).
    17. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    18. Meng, Fanli & Fu, Kun & Wang, Xueli & Wang, Yixiao & Wang, Lemeng & Fu, Dong, 2024. "Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas," Energy, Elsevier, vol. 286(C).
    19. Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
    20. Meng, Fanzhi & Meng, Yuan & Ju, Tongyao & Han, Siyu & Lin, Li & Jiang, Jianguo, 2022. "Research progress of aqueous amine solution for CO2 capture: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:4:p:66-1406:d:1498019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.