Metal Oxalates as a CO 2 Solid State Reservoir: The Carbon Capture Reaction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dri, Marco & Sanna, Aimaro & Maroto-Valer, M. Mercedes, 2014. "Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products," Applied Energy, Elsevier, vol. 113(C), pages 515-523.
- Barzagli, Francesco & Giorgi, Claudia & Mani, Fabrizio & Peruzzini, Maurizio, 2018. "Reversible carbon dioxide capture by aqueous and non-aqueous amine-based absorbents: A comparative analysis carried out by 13C NMR spectroscopy," Applied Energy, Elsevier, vol. 220(C), pages 208-219.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
- Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
- Wang, Rujie & Zhao, Huajun & Qi, Cairao & Yang, Xiaotong & Zhang, Shihan & Li, Ming & Wang, Lidong, 2022. "Novel tertiary amine-based biphasic solvent for energy-efficient CO2 capture with low corrosivity," Energy, Elsevier, vol. 260(C).
- Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
- Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
- Wang, Rujie & Yang, Yuying & Wang, Mengfan & Lin, Jinshan & Zhang, Shihan & An, Shanlong & Wang, Lidong, 2021. "Energy efficient diethylenetriamine–1-propanol biphasic solvent for CO2 capture: Experimental and theoretical study," Applied Energy, Elsevier, vol. 290(C).
- Yin, Xin & Shen, Shufeng, 2023. "Water-lean monophasic absorbents containing secondary alkanolamines and dimethyl sulfoxide for energy-efficient CO2 capture," Energy, Elsevier, vol. 281(C).
- Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
- Quentin Wehrung & Enrico Destefanis & Caterina Caviglia & Davide Bernasconi & Linda Pastero & Marco Bruno & Andrea Bernasconi & Alex Magnetti Vernai & Alice Di Rienzo & Alessandro Pavese, 2023. "Experimental Modeling of CO 2 Sorption/Desorption Cycle with MDEA/PZ Blend: Kinetics and Regeneration Temperature," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
- Zhou, Xiaobin & Jing, Guohua & Lv, Bihong & Liu, Fan & Zhou, Zuoming, 2019. "Low-viscosity and efficient regeneration of carbon dioxide capture using a biphasic solvent regulated by 2-amino-2-methyl-1-propanol," Applied Energy, Elsevier, vol. 235(C), pages 379-390.
- Meng, Fanli & Fu, Kun & Wang, Xueli & Ye, Bonan & Zhang, Pan & Wang, Lemeng & Fu, Dong, 2024. "Performance of a new water lean absorbent composed of EHA and DEGDEE in CO2 capture and regeneration," Energy, Elsevier, vol. 304(C).
- Chen, Qiuju & Ding, Wenjin & Sun, Hongjuan & Peng, Tongjiang, 2019. "Mineral carbonation of yellow phosphorus slag and characterization of carbonated product," Energy, Elsevier, vol. 188(C).
- Yafei Zhao & Ken-ichi Itakura, 2023. "A State-of-the-Art Review on Technology for Carbon Utilization and Storage," Energies, MDPI, vol. 16(10), pages 1-22, May.
- Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
- Zhang, Xiaowen & Huang, Yufei & Gao, Hongxia & Luo, Xiao & Liang, Zhiwu & Tontiwachwuthikul, Paitoon, 2019. "Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process," Applied Energy, Elsevier, vol. 240(C), pages 827-841.
- Fu, Kun & Zheng, Mingzhen & Wang, Haijie & Fu, Dong, 2022. "Effect of water content on the characteristics of CO2 capture processes in absorbents of 2-ethylhexan-1-amine + diglyme," Energy, Elsevier, vol. 244(PA).
- Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
- Meng, Fanli & Fu, Kun & Wang, Xueli & Wang, Yixiao & Wang, Lemeng & Fu, Dong, 2024. "Study on absorption and regeneration performance of EHA-DMSO non-aqueous absorbent for CO2 capture from flue gas," Energy, Elsevier, vol. 286(C).
- Zhang, Xiaowen & Liu, Helei & Liang, Zhiwu & Idem, Raphael & Tontiwachwuthikul, Paitoon & Jaber Al-Marri, Mohammed & Benamor, Abdelbaki, 2018. "Reducing energy consumption of CO2 desorption in CO2-loaded aqueous amine solution using Al2O3/HZSM-5 bifunctional catalysts," Applied Energy, Elsevier, vol. 229(C), pages 562-576.
- Meng, Fanzhi & Meng, Yuan & Ju, Tongyao & Han, Siyu & Lin, Li & Jiang, Jianguo, 2022. "Research progress of aqueous amine solution for CO2 capture: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
More about this item
Keywords
carbon mineralization; carbon capture; metal oxalate; ascorbic acid; carbon isotopes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:4:p:66-1406:d:1498019. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.