IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2023i1p3-48d1310664.html
   My bibliography  Save this article

CO 2 Capture Using Deep Eutectic Solvents Integrated with Microalgal Fixation

Author

Listed:
  • Eliza Gabriela Brettfeld

    (Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania
    Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independenței nr. 313, 060042 Bucharest, Romania)

  • Daria Gabriela Popa

    (Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania
    Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști nr. 59, 011464 Bucharest, Romania)

  • Tănase Dobre

    (Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, Splaiul Independenței nr. 313, 060042 Bucharest, Romania)

  • Corina Ioana Moga

    (Research and Development Department, DFR Systems, Drumul Taberei 46, 061392 Bucharest, Romania)

  • Diana Constantinescu-Aruxandei

    (Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania)

  • Florin Oancea

    (Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania
    Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști nr. 59, 011464 Bucharest, Romania)

Abstract

In this study, we investigated the use of functionalized deep eutectic solvents (DESs) as a medium for CO 2 capture integrated with CO 2 desorption and biofixation in microalgal culture, as an approach for carbon capture, utilization, and storage (CCUS). The newly devised DES formulation—comprising choline chloride, ethylene glycol, and monoethanolamine—demonstrated a significant advancement in CO 2 absorption capacity compared with conventional solvents. Effective CO 2 desorption from the solvent was also achieved, recovering nearly 90% of the captured CO 2 . We then examined the application of the functionalized DESs to promote microalgal cultivation using a Chlorella sp. strain. The experimental results indicated that microalgae exposed to DES-desorbed CO 2 exhibited heightened growth rates and enhanced biomass production, signifying the potential of DES-driven CO 2 capture for sustainable microalgal biomass cultivation. This research contributes to the growing field of CCUS strategies, offering an avenue for efficient CO 2 capture and conversion into valuable biomasses, thereby contributing to both environmental sustainability and bioresource use.

Suggested Citation

  • Eliza Gabriela Brettfeld & Daria Gabriela Popa & Tănase Dobre & Corina Ioana Moga & Diana Constantinescu-Aruxandei & Florin Oancea, 2023. "CO 2 Capture Using Deep Eutectic Solvents Integrated with Microalgal Fixation," Clean Technol., MDPI, vol. 6(1), pages 1-17, December.
  • Handle: RePEc:gam:jcltec:v:6:y:2023:i:1:p:3-48:d:1310664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    2. Tobiesen, Finn Andrew & Haugen, Geir & Hartono, Ardi, 2018. "A systematic procedure for process energy evaluation for post combustion CO2 capture: Case study of two novel strong bicarbonate-forming solvents," Applied Energy, Elsevier, vol. 211(C), pages 161-173.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Carus & Lara Dammer & Achim Raschka & Pia Skoczinski, 2020. "Renewable carbon: Key to a sustainable and future‐oriented chemical and plastic industry: Definition, strategy, measures and potential," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 488-505, June.
    2. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    3. Subrato Acharjya & Jiacheng Chen & Minghui Zhu & Chong Peng, 2021. "Elucidating the reactivity and nature of active sites for tin phthalocyanine during CO2 reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(6), pages 1191-1197, December.
    4. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Rafaty, R. & Dolphin, G. & Pretis, F., 2020. "Carbon pricing and the elasticity of CO2 emissions," Cambridge Working Papers in Economics 20116, Faculty of Economics, University of Cambridge.
    6. Cameron Hepburn & Brian O’Callaghan & Nicholas Stern & Joseph Stiglitz & Dimitri Zenghelis, 2020. "Will COVID-19 fiscal recovery packages accelerate or retard progress on climate change?," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 36(Supplemen), pages 359-381.
    7. Moreaux, Michel & Amigues, Jean-Pierre & van der Meijden, Gerard & Withagen, Cees, 2024. "Carbon capture: Storage vs. Utilization," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    8. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
    9. Dahai, He & Zhihong, Yin & Lin, Qin & Yuhong, Li & Lei, Tian & Jiang, Li & Liandong, Zhu, 2024. "The application of magical microalgae in carbon sequestration and emission reduction: Removal mechanisms and potential analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    10. Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
    11. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    12. Min Zhang & Yan Qiu & Chunling Li & Tao Cui & Mingxing Yang & Jun Yan & Wu Yang, 2023. "A Habitable Earth and Carbon Neutrality: Mission and Challenges Facing Resources and the Environment in China—An Overview," IJERPH, MDPI, vol. 20(2), pages 1-35, January.
    13. Wenyue Zhou & Lingying Pan & Xiaohui Mao, 2023. "Optimization and Comparative Analysis of Different CCUS Systems in China: The Case of Shanxi Province," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    14. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    15. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. Xinfeng Chen & Chengdong Peng & Wenyan Dan & Long Yu & Yinan Wu & Honghan Fei, 2022. "Bromo- and iodo-bridged building units in metal-organic frameworks for enhanced carrier transport and CO2 photoreduction by water vapor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Qi Liu & Yangwen Zhu & Hang Ye & Haiying Liao & Quanqi Dai & Michelle Tiong & Chenggang Xian & Dan Luo, 2024. "Mitigating Asphaltene Deposition in CO 2 Flooding with Carbon Quantum Dots," Energies, MDPI, vol. 17(11), pages 1-11, June.
    18. Henriette Naims, 2020. "Economic aspirations connected to innovations in carbon capture and utilization value chains," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1126-1139, October.
    19. Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    20. Lin, Richen & O'Shea, Richard & Deng, Chen & Wu, Benteng & Murphy, Jerry D., 2021. "A perspective on the efficacy of green gas production via integration of technologies in novel cascading circular bio-systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2023:i:1:p:3-48:d:1310664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.