Techno-Economic Assessment of IGCC Power Plants Using Gas Switching Technology to Minimize the Energy Penalty of CO 2 Capture
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Szima, Szabolcs & Nazir, Shareq Mohd & Cloete, Schalk & Amini, Shahriar & Fogarasi, Szabolcs & Cormos, Ana-Maria & Cormos, Calin-Cristian, 2019. "Gas switching reforming for flexible power and hydrogen production to balance variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 207-219.
- Cloete, Schalk & Hirth, Lion, 2020.
"Flexible power and hydrogen production: Finding synergy between CCS and variable renewables,"
Energy, Elsevier, vol. 192(C).
- Cloete, Schalk & Hirth, Lion, 2019. "Flexible power and hydrogen production: Finding synergy between CCS and variable renewables," EconStor Preprints 202076, ZBW - Leibniz Information Centre for Economics.
- Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
- Sorgenfrei, Max & Tsatsaronis, George, 2014. "Design and evaluation of an IGCC power plant using iron-based syngas chemical-looping (SCL) combustion," Applied Energy, Elsevier, vol. 113(C), pages 1958-1964.
- Shi, Bin & Wu, Erdorng & Wu, Wei, 2017. "Novel design of chemical looping air separation process for generating electricity and oxygen," Energy, Elsevier, vol. 134(C), pages 449-457.
- Ishida, M. & Zheng, D. & Akehata, T., 1987. "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis," Energy, Elsevier, vol. 12(2), pages 147-154.
- Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2013. "Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up," Energy, Elsevier, vol. 53(C), pages 221-229.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Ying-jie & Zhang, Yu-ke & Cui, Yang & Duan, Yuan-yuan & Huang, Yi & Wei, Guo-qiang & Mohamed, Usama & Shi, Li-juan & Yi, Qun & Nimmo, William, 2022. "Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture," Energy, Elsevier, vol. 238(PA).
- Cloete, Schalk & Hirth, Lion, 2020.
"Flexible power and hydrogen production: Finding synergy between CCS and variable renewables,"
Energy, Elsevier, vol. 192(C).
- Cloete, Schalk & Hirth, Lion, 2019. "Flexible power and hydrogen production: Finding synergy between CCS and variable renewables," EconStor Preprints 202076, ZBW - Leibniz Information Centre for Economics.
- Cloete, Schalk & Ruhnau, Oliver & Cloete, Jan Hendrik & Hirth, Lion, 2021. "Blue hydrogen and industrial base products: The future of fossil fuel exporters in a net-zero world," EconStor Preprints 234469, ZBW - Leibniz Information Centre for Economics.
- Shi, Bin & Wen, Fang & Wu, Wei, 2020. "Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop," Energy, Elsevier, vol. 200(C).
- Cloete, Schalk & Arnaiz del Pozo, Carlos & Jiménez Álvaro, Ángel, 2022. "System-friendly process design: Optimizing blue hydrogen production for future energy systems," Energy, Elsevier, vol. 259(C).
- Mishra, Navneet & Bhui, Barnali & Vairakannu, Prabu, 2019. "Comparative evaluation of performance of high and low ash coal fuelled chemical looping combustion integrated combined cycle power generating systems," Energy, Elsevier, vol. 169(C), pages 305-318.
- Patel, Ismail & Shah, Adil & Shen, Boyang & Wei, Haigening & Hao, Luning & Hu, Jintao & Wang, Qi & Coombs, Tim, 2023. "Stochastic optimisation and economic analysis of combined high temperature superconducting magnet and hydrogen energy storage system for smart grid applications," Applied Energy, Elsevier, vol. 341(C).
- Basavaraja, R.J. & Jayanti, S., 2015. "Viability of fuel switching of a gas-fired power plant operating in chemical looping combustion mode," Energy, Elsevier, vol. 81(C), pages 213-221.
- Levi, Peter G. & Pollitt, Michael G., 2015.
"Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty,"
Energy Policy, Elsevier, vol. 87(C), pages 48-59.
- Peter G. Levi & Michael G. Pollitt, 2015. "Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty," Cambridge Working Papers in Economics 1506, Faculty of Economics, University of Cambridge.
- Peter G. Levi & Michael G. Pollitt, 2015. "Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty," Working Papers EPRG 1501, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
- Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
- Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016.
"Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system,"
Energy Policy, Elsevier, vol. 94(C), pages 421-431.
- Joan Batalla-Bejerano & Maria Teresa Costa-Campi & Elisa Trujillo-Baute, 2015. "Unexpected consequences of liberalisation: metering, losses, load profiles and cost settlement in Spain’s electricity system," Working Papers 2015/16, Institut d'Economia de Barcelona (IEB).
- Cormos, Calin-Cristian & Dragan, Mihaela & Petrescu, Letitia & Cormos, Ana-Maria & Dragan, Simion & Bathori, Arthur-Maximilian & Galusnyak, Stefan-Cristian, 2024. "Synthetic natural gas (SNG) production by biomass gasification with CO2 capture: Techno-economic and life cycle analysis (LCA)," Energy, Elsevier, vol. 312(C).
- Sasaki, Takashi & Suzuki, Tomoko & Akasaka, Yasufumi & Takaoka, Masaki, 2017. "Generation efficiency improvement of IGCC with CO2 capture by the application of the low temperature reactive shift catalyst," Energy, Elsevier, vol. 118(C), pages 60-67.
- Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
- Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
- Zahari, Teuku Naraski & McLellan, Benjamin Craig, 2024. "Sustainability of Indonesia's transportation sector energy and resources demand under the low carbon transition strategies," Energy, Elsevier, vol. 311(C).
- Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
- Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020.
"Heating with wind: Economics of heat pumps and variable renewables,"
Energy Economics, Elsevier, vol. 92(C).
- Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," EconStor Preprints 206688, ZBW - Leibniz Information Centre for Economics, revised 2020.
More about this item
Keywords
gas switching combustion; gas switching oxygen production; integrated gasification combined cycle; chemical looping combustion; CCS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:3:y:2021:i:3:p:36-617:d:611858. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.