IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v341y2023ics0306261923004348.html
   My bibliography  Save this article

Stochastic optimisation and economic analysis of combined high temperature superconducting magnet and hydrogen energy storage system for smart grid applications

Author

Listed:
  • Patel, Ismail
  • Shah, Adil
  • Shen, Boyang
  • Wei, Haigening
  • Hao, Luning
  • Hu, Jintao
  • Wang, Qi
  • Coombs, Tim

Abstract

High Temperature Superconducting (HTS) Magnetic Energy Storage (SMES) devices are promising high-power storage devices, although their widespread use is limited by their high capital and operating costs. This work investigates their inclusion in smart grids when used in tandem with hydrogen fuel cells and other energy storage devices using a novel two-stage model. The first stage presents a stochastic allocation algorithm to optimally size the smart grid assets with the maximum expected profit. The next stage models the time system evolution with these optimal capacities using a dynamic Monte Carlo model to investigate the system reliability, capacity credit and loss of load expectation. A novel energy management algorithm is also presented that maximises the time with which a fleet of energy storage devices can fulfil a stochastically unknown power request. The analysis shows that from a purely economic standpoint, HTS SMES and hydrogen energy do not achieve high penetration levels (up to 10 %) due to their high costs, although the penetration levels can be improved with higher power imbalance penalties in day ahead markets. The novel capacity credit and reliability investigation shows that they can improve the reliability and capacity credit of wind turbines by approximately 30 %, thereby improving potential wind penetration levels. The optimal energy management algorithm improves the fleet lifespan and reliability by up to 9 % depending on the connected capacity.

Suggested Citation

  • Patel, Ismail & Shah, Adil & Shen, Boyang & Wei, Haigening & Hao, Luning & Hu, Jintao & Wang, Qi & Coombs, Tim, 2023. "Stochastic optimisation and economic analysis of combined high temperature superconducting magnet and hydrogen energy storage system for smart grid applications," Applied Energy, Elsevier, vol. 341(C).
  • Handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004348
    DOI: 10.1016/j.apenergy.2023.121070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004348
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cloete, Schalk & Hirth, Lion, 2020. "Flexible power and hydrogen production: Finding synergy between CCS and variable renewables," Energy, Elsevier, vol. 192(C).
    2. Muaddi, Saad & Singh, Chanan, 2022. "Investigating capacity credit sensitivity to reliability metrics and computational methodologies," Applied Energy, Elsevier, vol. 325(C).
    3. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    4. Ahmadi, Bahman & Ceylan, Oguzhan & Ozdemir, Aydogan & Fotuhi-Firuzabad, Mahmoud, 2022. "A multi-objective framework for distributed energy resources planning and storage management," Applied Energy, Elsevier, vol. 314(C).
    5. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    6. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    7. Zhang, Cong & Greenblatt, Jeffery B. & Wei, Max & Eichman, Josh & Saxena, Samveg & Muratori, Matteo & Guerra, Omar J., 2020. "Flexible grid-based electrolysis hydrogen production for fuel cell vehicles reduces costs and greenhouse gas emissions," Applied Energy, Elsevier, vol. 278(C).
    8. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2015. "Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1791-1808.
    9. Swisher, Philip & Murcia Leon, Juan Pablo & Gea-Bermúdez, Juan & Koivisto, Matti & Madsen, Helge Aagaard & Münster, Marie, 2022. "Competitiveness of a low specific power, low cut-out wind speed wind turbine in North and Central Europe towards 2050," Applied Energy, Elsevier, vol. 306(PB).
    10. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    11. Mehigan, L. & Al Kez, Dlzar & Collins, Seán & Foley, Aoife & Ó’Gallachóir, Brian & Deane, Paul, 2020. "Renewables in the European power system and the impact on system rotational inertia," Energy, Elsevier, vol. 203(C).
    12. Panda, Ambarish & Mishra, Umakanta & Aviso, Kathleen B., 2020. "Optimizing hybrid power systems with compressed air energy storage," Energy, Elsevier, vol. 205(C).
    13. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    14. Kolhe, Mohanlal & Kolhe, Sunita & Joshi, J. C., 2002. "Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system for India," Energy Economics, Elsevier, vol. 24(2), pages 155-165, March.
    15. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qi & Xiao, Xukang & Pu, Yuchen & Luo, Shuyu & Liu, Hong & Chen, Weirong, 2023. "Hierarchical optimal scheduling method for regional integrated energy systems considering electricity-hydrogen shared energy," Applied Energy, Elsevier, vol. 349(C).
    2. Wang, Renshun & Wang, Shilong & Geng, Guangchao & Jiang, Quanyuan, 2024. "Multi-time-scale capacity credit assessment of renewable and energy storage considering complex operational time series," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    2. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    3. Yu, Hyun Jin Julie, 2018. "A prospective economic assessment of residential PV self-consumption with batteries and its systemic effects: The French case in 2030," Energy Policy, Elsevier, vol. 113(C), pages 673-687.
    4. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    5. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    6. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    7. Petersen, Claire & Reguant, Mar & Segura, Lola, 2024. "Measuring the impact of wind power and intermittency," Energy Economics, Elsevier, vol. 129(C).
    8. Cloete, Schalk & Hirth, Lion, 2020. "Flexible power and hydrogen production: Finding synergy between CCS and variable renewables," Energy, Elsevier, vol. 192(C).
    9. López Prol, Javier & Steininger, Karl W. & Williges, Keith & Grossmann, Wolf D. & Grossmann, Iris, 2023. "Potential gains of long-distance trade in electricity," Energy Economics, Elsevier, vol. 124(C).
    10. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    11. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Xu, Wenya & Wang, Zixuan, 2022. "Operational performance and grid-support assessment of distributed flexibility practices among residential prosumers under high PV penetration," Energy, Elsevier, vol. 238(PB).
    12. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    13. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    14. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. Koumparou, Ioannis & Christoforidis, Georgios C. & Efthymiou, Venizelos & Papagiannis, Grigoris K. & Georghiou, George E., 2017. "Configuring residential PV net-metering policies – A focus on the Mediterranean region," Renewable Energy, Elsevier, vol. 113(C), pages 795-812.
    16. Koski, Heli & Melkas, Helinä & Mäntylä, Martti & Pieters, Roel & Svento, Rauli & Särkikoski, Tuomo & Talja, Heli & Hyyppä, Juha & Kaartinen, Harri & Hyyppä, Hannu & Matikainen, Leena, 2016. "Technology Disruptions as Enablers of Organizational and Social Innovation in Digitalized Environment," ETLA Working Papers 45, The Research Institute of the Finnish Economy.
    17. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
    18. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    19. Majah-Leah Ravago & James Roumasset, 2016. "The Public Economics of Electricity Policy with Philippine Applications," Working Papers 201613, University of Hawaii at Manoa, Department of Economics.
    20. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:341:y:2023:i:c:s0306261923004348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.