IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v53y2013icp221-229.html
   My bibliography  Save this article

Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up

Author

Listed:
  • Giuffrida, Antonio
  • Romano, Matteo C.
  • Lozza, Giovanni

Abstract

Air-blown IGCC systems with hot fuel gas clean-up are investigated. In detail, the gas clean-up station consists of two reactors: in the first, the raw syngas exiting the gasifier and passed through high-temperature syngas coolers is desulfurized by means of a zinc oxide-based sorbent, whereas in the second the sulfided sorbent is duly regenerated. The hot fuel gas clean-up station releases H2S-free syngas, which is ready to fuel the combustion turbine after hot gas filtration, and a SO2-laden stream, which is successively treated in a wet scrubber.

Suggested Citation

  • Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2013. "Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up," Energy, Elsevier, vol. 53(C), pages 221-229.
  • Handle: RePEc:eee:energy:v:53:y:2013:i:c:p:221-229
    DOI: 10.1016/j.energy.2013.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213001114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni, 2011. "Thermodynamic analysis of air-blown gasification for IGCC applications," Applied Energy, Elsevier, vol. 88(11), pages 3949-3958.
    2. Descamps, C. & Bouallou, C. & Kanniche, M., 2008. "Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal," Energy, Elsevier, vol. 33(6), pages 874-881.
    3. Giuffrida, Antonio & Romano, Matteo C. & Lozza, Giovanni G., 2010. "Thermodynamic assessment of IGCC power plants with hot fuel gas desulfurization," Applied Energy, Elsevier, vol. 87(11), pages 3374-3383, November.
    4. Kunze, Christian & Riedl, Karsten & Spliethoff, Hartmut, 2011. "Structured exergy analysis of an integrated gasification combined cycle (IGCC) plant with carbon capture," Energy, Elsevier, vol. 36(3), pages 1480-1487.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kotowicz, Janusz & Michalski, Sebastian, 2015. "Influence of four-end HTM (high temperature membrane) parameters on the thermodynamic and economic characteristics of a supercritical power plant," Energy, Elsevier, vol. 81(C), pages 662-673.
    2. Kang, Do Won & Jang, Hyuck Jun & Kim, Tong Seop, 2014. "Using compressor discharge air bypass to enhance power generation of a steam-injected gas turbine for combined heat and power," Energy, Elsevier, vol. 76(C), pages 390-399.
    3. Nam, Hoseok & Ibano, Kenzo & Konishi, Satoshi, 2020. "Cost analysis and energy return on investment of fuel cell and gas turbine integrated fusion-biomass hybrid system; application of a small scale conceptual fusion reactor GNOME," Energy, Elsevier, vol. 203(C).
    4. Hamers, H.P. & Romano, M.C. & Spallina, V. & Chiesa, P. & Gallucci, F. & van Sint Annaland, M., 2015. "Boosting the IGCLC process efficiency by optimizing the desulfurization step," Applied Energy, Elsevier, vol. 157(C), pages 422-432.
    5. Kotowicz, Janusz & Michalski, Sebastian, 2016. "Thermodynamic and economic analysis of a supercritical and an ultracritical oxy-type power plant without and with waste heat recovery," Applied Energy, Elsevier, vol. 179(C), pages 806-820.
    6. Li, Jichao & Han, Wei & Li, Peijing & Ma, Wenjing & Xue, Xiaodong & Jin, Hongguang, 2023. "High-efficiency power generation system with CO2 capture based on cascading coal gasification employing chemical recuperation," Energy, Elsevier, vol. 283(C).
    7. Bonalumi, Davide & Giuffrida, Antonio, 2016. "Investigations of an air-blown integrated gasification combined cycle fired with high-sulphur coal with post-combustion carbon capture by aqueous ammonia," Energy, Elsevier, vol. 117(P2), pages 439-449.
    8. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    9. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    10. Li, Fang-zhou & Kang, Jing-xian & Song, Yun-cai & Feng, Jie & Li, Wen-ying, 2020. "Thermodynamic feasibility for molybdenum-based gaseous oxides assisted looping coal gasification and its derived power plant," Energy, Elsevier, vol. 194(C).
    11. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
    12. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
    13. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    14. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2023. "Ammonia from solid fuels: A cost-effective route to energy security with negative CO2 emissions," Energy, Elsevier, vol. 278(PA).
    15. Shi, Bin & Wen, Fang & Wu, Wei, 2020. "Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop," Energy, Elsevier, vol. 200(C).
    16. Szabolcs Szima & Carlos Arnaiz del Pozo & Schalk Cloete & Szabolcs Fogarasi & Ángel Jiménez Álvaro & Ana-Maria Cormos & Calin-Cristian Cormos & Shahriar Amini, 2021. "Techno-Economic Assessment of IGCC Power Plants Using Gas Switching Technology to Minimize the Energy Penalty of CO 2 Capture," Clean Technol., MDPI, vol. 3(3), pages 1-24, August.
    17. Sasaki, Takashi & Suzuki, Tomoko & Akasaka, Yasufumi & Takaoka, Masaki, 2017. "Generation efficiency improvement of IGCC with CO2 capture by the application of the low temperature reactive shift catalyst," Energy, Elsevier, vol. 118(C), pages 60-67.
    18. Meratizaman, Mousa & Monadizadeh, Sina & Tohidi Sardasht, Mohammad & Amidpour, Majid, 2015. "Techno economic and environmental assessment of using gasification process in order to mitigate the emission in the available steam power cycle," Energy, Elsevier, vol. 83(C), pages 1-14.
    19. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: Model setup, validation, and preliminary predictions," Energy, Elsevier, vol. 272(C).
    20. Hou, Qinlong & Zhao, Hongbin & Yang, Xiaoyu, 2018. "Thermodynamic performance study of the integrated MR-SOFC-CCHP system," Energy, Elsevier, vol. 150(C), pages 434-450.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    2. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    3. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    4. Lee, Adrian J. & Diwekar, Urmila M., 2012. "Optimal sensor placement in integrated gasification combined cycle power systems," Applied Energy, Elsevier, vol. 99(C), pages 255-264.
    5. Lee, Woo-Sung & Lee, Jae-Cheol & Oh, Hyun-Taek & Baek, Seung-Won & Oh, Min & Lee, Chang-Ha, 2017. "Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant," Energy, Elsevier, vol. 134(C), pages 731-742.
    6. Chen, Qun & Xu, Yun-Chao & Hao, Jun-Hong, 2014. "An optimization method for gas refrigeration cycle based on the combination of both thermodynamics and entransy theory," Applied Energy, Elsevier, vol. 113(C), pages 982-989.
    7. Cormos, Calin-Cristian, 2012. "Integrated assessment of IGCC power generation technology with carbon capture and storage (CCS)," Energy, Elsevier, vol. 42(1), pages 434-445.
    8. Mansouri Majoumerd, Mohammad & Raas, Han & De, Sudipta & Assadi, Mohsen, 2014. "Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project," Applied Energy, Elsevier, vol. 113(C), pages 452-462.
    9. Carlos Arnaiz del Pozo & Ángel Jiménez Álvaro & Jan Hendrik Cloete & Schalk Cloete & Shahriar Amini, 2020. "Exergy Analysis of Gas Switching Chemical Looping IGCC Plants," Energies, MDPI, vol. 13(3), pages 1-25, January.
    10. Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2023. "Ammonia from solid fuels: A cost-effective route to energy security with negative CO2 emissions," Energy, Elsevier, vol. 278(PA).
    11. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    12. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
    13. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
    14. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: Model setup, validation, and preliminary predictions," Energy, Elsevier, vol. 272(C).
    15. Zhang, Guoqiang & Yang, Yongping & Jin, Hongguang & Xu, Gang & Zhang, Kai, 2013. "Proposed combined-cycle power system based on oxygen-blown coal partial gasification," Applied Energy, Elsevier, vol. 102(C), pages 735-745.
    16. Franz, Johannes & Maas, Pascal & Scherer, Viktor, 2014. "Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes," Applied Energy, Elsevier, vol. 130(C), pages 532-542.
    17. Bonalumi, Davide & Giuffrida, Antonio, 2016. "Investigations of an air-blown integrated gasification combined cycle fired with high-sulphur coal with post-combustion carbon capture by aqueous ammonia," Energy, Elsevier, vol. 117(P2), pages 439-449.
    18. Sasaki, Takashi & Suzuki, Tomoko & Akasaka, Yasufumi & Takaoka, Masaki, 2017. "Generation efficiency improvement of IGCC with CO2 capture by the application of the low temperature reactive shift catalyst," Energy, Elsevier, vol. 118(C), pages 60-67.
    19. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    20. Lee, Jong Jun & Kim, Young Sik & Cha, Kyu Sang & Kim, Tong Seop & Sohn, Jeong L. & Joo, Yong Jin, 2009. "Influence of system integration options on the performance of an integrated gasification combined cycle power plant," Applied Energy, Elsevier, vol. 86(9), pages 1788-1796, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:53:y:2013:i:c:p:221-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.