IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v3y2013i3p567-578d28897.html
   My bibliography  Save this article

Silencing of Mg - pat-10 and Mg - unc-87 in the Plant Parasitic Nematode Meloidogyne graminicola Using siRNAs

Author

Listed:
  • Joseph Nsengimana

    (Department of Molecular Biotechnology, Ghent University, 653 Coupure links, 9000 Gent, Belgium
    Current Address: Department of Applied Biology, Kigali Institute of Science and Technology (KIST), 3900 Avenue de la Paix, 250 Kigali, Rwanda;)

  • Lander Bauters

    (Department of Molecular Biotechnology, Ghent University, 653 Coupure links, 9000 Gent, Belgium)

  • Annelies Haegeman

    (Department of Molecular Biotechnology, Ghent University, 653 Coupure links, 9000 Gent, Belgium)

  • Godelieve Gheysen

    (Department of Molecular Biotechnology, Ghent University, 653 Coupure links, 9000 Gent, Belgium)

Abstract

Until recently, the standard method for RNA interference (RNAi)-based reverse genetics in plant parasitic nematodes (PPNs) was based on the use of long double-stranded RNA (dsRNA). This increased the chance of off-target gene silencing through interactions between different short interfering RNAs (siRNAs) and non-cognate mRNA targets. In this work, we applied gene-specific knockdown of Mg-pat-10 and Mg-unc-87 of the root knot nematode Meloidogyne graminicola , using discrete 21 bp siRNAs. The homologue of Mg-pat-10 in C. elegans encodes body wall troponin C, which is essential for muscle contraction, whereas the homologue of Mg-unc-87 encodes two proteins involved in maintenance of the structure of myofilaments in the body wall muscle of C. elegans . The knockdown at the transcript level, as seen by semi-quantitative RT-PCR analysis, indicates that the Mg-pat-10 gene was silenced after soaking the nematodes in a specific siRNA for 48 h. At 72 h post-soaking, the Mg-pat-10 mRNA level was similar to the control, indicating the recovery of expression between 48 h and 72 h post-soaking. For Mg-unc-87 the nematodes started to recover from siRNA silencing 24 h after thorough washing. A migration assay showed that for the nematodes that were soaked in the control (siRNA of β-1,4-endoglucanase), 77% of the nematodes completed migration through the column in a 12 h period. By comparison with the control, nematodes incubated in the siRNA of pat-10 or unc-87 were significantly inhibited in their motility. After 12 h, only 6.3% of the juveniles incubated in the Mg-pat-10 siRNA and 9.3% of those incubated in Mg-unc-87 siRNA had migrated through the column, representing 91.8% and 87.9% inhibition respectively compared to the control. In the present work, we demonstrated that M. graminicola is readily susceptible to siRNAs of two genes involved in nematode motility. This is an important contribution to the progressive use of siRNA for functional analysis. Moreover, the application of RNAi in PPNs opens the way for environmentally friendly control of M. graminicola .

Suggested Citation

  • Joseph Nsengimana & Lander Bauters & Annelies Haegeman & Godelieve Gheysen, 2013. "Silencing of Mg - pat-10 and Mg - unc-87 in the Plant Parasitic Nematode Meloidogyne graminicola Using siRNAs," Agriculture, MDPI, vol. 3(3), pages 1-12, September.
  • Handle: RePEc:gam:jagris:v:3:y:2013:i:3:p:567-578:d:28897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/3/3/567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/3/3/567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Fire & SiQun Xu & Mary K. Montgomery & Steven A. Kostas & Samuel E. Driver & Craig C. Mello, 1998. "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans," Nature, Nature, vol. 391(6669), pages 806-811, February.
    2. Sayda M. Elbashir & Jens Harborth & Winfried Lendeckel & Abdullah Yalcin & Klaus Weber & Thomas Tuschl, 2001. "Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells," Nature, Nature, vol. 411(6836), pages 494-498, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Satish Kumar Rajasekharan & Chaitany Jayprakash Raorane & Jintae Lee, 2021. "A Facile and Modified Scheme for Synchronization and Isolation of Nematode Eggs," Agriculture, MDPI, vol. 11(7), pages 1-7, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    2. Mark G Sterken & L Basten Snoek & Kobus J Bosman & Jikke Daamen & Joost A G Riksen & Jaap Bakker & Gorben P Pijlman & Jan E Kammenga, 2014. "A Heritable Antiviral RNAi Response Limits Orsay Virus Infection in Caenorhabditis elegans N2," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-8, February.
    3. Gersbach, Hans & Sorger, Gerhard & Amon, Christian, 2018. "Hierarchical growth: Basic and applied research," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 434-459.
    4. Aflaq Hamid & Sahar Saleem, 2022. "Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistance," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 58(3), pages 173-184.
    5. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    6. Shew, Aaron M. & Danforth, Diana M. & Nalley, Lawton L. & Nayga, Rodolfo M. Jr. & Tsiboe, Francis & Dixon, Bruce L., 2016. "Consumers’ Willingness-To-Pay for RNAi versus Bt Rice: Are all biotechnologies the same?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235110, Agricultural and Applied Economics Association.
    7. Ian F. Price & Jillian A. Wagner & Benjamin Pastore & Hannah L. Hertz & Wen Tang, 2023. "C. elegans germ granules sculpt both germline and somatic RNAome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Kyle A McQuisten & Andrew S Peek, 2009. "Comparing Artificial Neural Networks, General Linear Models and Support Vector Machines in Building Predictive Models for Small Interfering RNAs," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-14, October.
    9. Loet Leydesdorff & Daniele Rotolo & Ismael Rafols, 2012. "Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2239-2253, November.
    10. Ana M Rojas & Anna Santamaria & Rainer Malik & Thomas Skøt Jensen & Roman Körner & Ian Morilla & David de Juan & Martin Krallinger & Daniel Aaen Hansen & Robert Hoffmann & Jonathan Lees & Adam Reid & , 2012. "Uncovering the Molecular Machinery of the Human Spindle—An Integration of Wet and Dry Systems Biology," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-16, March.
    11. Arnaud Segers & Joachim Carpentier & Frédéric Francis & Rudy Caparros Megido, 2023. "Gene Silencing of laccase 1 Induced by Double-Stranded RNA in Callosobruchus maculatus (Fabricius 1775) (Coleoptera: Chrysomelidae) Suggests RNAi as a Potential New Biotechnological Tool for Bruchid’s," Agriculture, MDPI, vol. 13(2), pages 1-19, February.
    12. Wei-Jie Pan & Chi-Wei Chen & Yen-Wei Chu, 2011. "siPRED: Predicting siRNA Efficacy Using Various Characteristic Methods," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    13. Song Cui & Eunseog Youn & Joohyun Lee & Stephan J Maas, 2014. "An Improved Systematic Approach to Predicting Transcription Factor Target Genes Using Support Vector Machine," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    14. Zahra Narimani & Hamid Beigy & Ashar Ahmad & Ali Masoudi-Nejad & Holger Fröhlich, 2017. "Expectation propagation for large scale Bayesian inference of non-linear molecular networks from perturbation data," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    15. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    16. Brian Hauge & Christopher Oggero & Nicole Nguyen & Changlin Fu & Fenggao Dong, 2009. "Single Tube, High Throughput Cloning of Inverted Repeat Constructs for Double-Stranded RNA Expression," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-7, September.
    17. Chai, Sen & Menon, Anoop, 2019. "Breakthrough recognition: Bias against novelty and competition for attention," Research Policy, Elsevier, vol. 48(3), pages 733-747.
    18. Ke, Qing, 2020. "The citation disadvantage of clinical research," Journal of Informetrics, Elsevier, vol. 14(1).
    19. Miaowei Mao & Yajie Qian & Wenyao Zhang & Siyu Zhou & Zefeng Wang & Xianjun Chen & Yi Yang, 2023. "Controlling protein stability with SULI, a highly sensitive tag for stabilization upon light induction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Li-Xin Ma & Rong-Tao He & Shu-Yan Yan & Wen-Jia Yang, 2022. "RNAi Suppression of Hormone Receptor HR3 Blocks Larval Molting and Metamorphosis in the Cigarette Beetle, Lasioderma serricorne," Agriculture, MDPI, vol. 12(8), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:3:y:2013:i:3:p:567-578:d:28897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.