IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v14y2020i1s1751157719303025.html
   My bibliography  Save this article

The citation disadvantage of clinical research

Author

Listed:
  • Ke, Qing

Abstract

Biomedical research encompasses diverse types of activities, from basic science (“bench”) to clinical medicine (“bedside”) to bench-to-bedside translational research. It, however, remains unclear whether different types of research receive citations at varying rates. Here we aim to answer this question by using a newly proposed paper-level indicator that quantifies the extent to which a paper is basic science or clinical medicine. Applying this measure to 5 million biomedical papers, we find a systematic citation disadvantage of clinical oriented papers; they tend to garner far fewer citations and are less likely to be hit works than papers oriented towards basic science. At the same time, clinical research has a higher variance in its citation. We also find that the citation difference between basic and clinical research decreases, yet still persists, if longer citation-window is used. Given the increasing adoption of short-term, citation-based bibliometric indicators in funding decisions, the under-cited effect of clinical research may provide disincentives for bio-researchers to venture into the translation of basic scientific discoveries into clinical applications, thus providing explanations of reasons behind the existence of the gap between basic and clinical research that is commented as “valley of death” and the commentary of “extinction” risk of translational researchers. Our work may provide insights to policy-makers on how to evaluate different types of biomedical research.

Suggested Citation

  • Ke, Qing, 2020. "The citation disadvantage of clinical research," Journal of Informetrics, Elsevier, vol. 14(1).
  • Handle: RePEc:eee:infome:v:14:y:2020:i:1:s1751157719303025
    DOI: 10.1016/j.joi.2019.100998
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157719303025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2019.100998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sei‐Ching Joanna Sin, 2011. "International coauthorship and citation impact: A bibliometric study of six LIS journals, 1980–2008," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(9), pages 1770-1783, September.
    2. Declan Butler, 2008. "Translational research: Crossing the valley of death," Nature, Nature, vol. 453(7197), pages 840-842, June.
    3. repec:nas:journl:v:115:y:2018:p:e3635-e3644 is not listed on IDEAS
    4. Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
    5. Andrew Fire & SiQun Xu & Mary K. Montgomery & Steven A. Kostas & Samuel E. Driver & Craig C. Mello, 1998. "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans," Nature, Nature, vol. 391(6669), pages 806-811, February.
    6. Michael H. MacRoberts & Barbara R. MacRoberts, 1989. "Problems of citation analysis: A critical review," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 40(5), pages 342-349, September.
    7. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    8. McMillan, G. Steven & Narin, Francis & Deeds, David L., 2000. "An analysis of the critical role of public science in innovation: the case of biotechnology," Research Policy, Elsevier, vol. 29(1), pages 1-8, January.
    9. Daniele Fanelli, 2013. "Positive results receive more citations, but only in some disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 701-709, February.
    10. Tai‐Quan Peng & Jonathan J.H. Zhu, 2012. "Where you publish matters most: A multilevel analysis of factors affecting citations of internet studies," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(9), pages 1789-1803, September.
    11. Fereshteh Didegah & Mike Thelwall, 2013. "Determinants of research citation impact in nanoscience and nanotechnology," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(5), pages 1055-1064, May.
    12. Chai, Sen & Menon, Anoop, 2019. "Breakthrough recognition: Bias against novelty and competition for attention," Research Policy, Elsevier, vol. 48(3), pages 733-747.
    13. Tai-Quan Peng & Jonathan J.H. Zhu, 2012. "Where you publish matters most: A multilevel analysis of factors affecting citations of internet studies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(9), pages 1789-1803, September.
    14. Sei-Ching Joanna Sin, 2011. "International coauthorship and citation impact: A bibliometric study of six LIS journals, 1980–2008," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(9), pages 1770-1783, September.
    15. Toole, Andrew A., 2012. "The impact of public basic research on industrial innovation: Evidence from the pharmaceutical industry," Research Policy, Elsevier, vol. 41(1), pages 1-12.
    16. Olle Persson & Wolfgang Glänzel & Rickard Danell, 2004. "Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies," Scientometrics, Springer;Akadémiai Kiadó, vol. 60(3), pages 421-432, August.
    17. Francis Narin & Gabriel Pinski & Helen Hofer Gee, 1976. "Structure of the Biomedical Literature," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(1), pages 25-45, January.
    18. Bornmann, Lutz & Schier, Hermann & Marx, Werner & Daniel, Hans-Dieter, 2012. "What factors determine citation counts of publications in chemistry besides their quality?," Journal of Informetrics, Elsevier, vol. 6(1), pages 11-18.
    19. Lawrence D. Fu & Constantin F. Aliferis, 2010. "Using content-based and bibliometric features for machine learning models to predict citation counts in the biomedical literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 257-270, October.
    20. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Li & Xuli Tang & Wei Lu, 2023. "Tracking biomedical articles along the translational continuum: a measure based on biomedical knowledge representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1295-1319, February.
    2. Nicole Heßler & Andreas Ziegler, 2022. "Evidence-based recommendations for increasing the citation frequency of original articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(6), pages 3367-3381, June.
    3. Xin Li & Xuli Tang & Wei Lu, 2024. "How biomedical papers accumulated their clinical citations: a large-scale retrospective analysis based on PubMed," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3315-3339, June.
    4. Li, Xin & Tang, Xuli & Cheng, Qikai, 2022. "Predicting the clinical citation count of biomedical papers using multilayer perceptron neural network," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Dongyu Zang & Chunli Liu, 2023. "Exploring the clinical translation intensity of papers published by the world’s top scientists in basic medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2371-2416, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iman Tahamtan & Askar Safipour Afshar & Khadijeh Ahamdzadeh, 2016. "Factors affecting number of citations: a comprehensive review of the literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(3), pages 1195-1225, June.
    2. Martorell Cunil, Onofre & Otero González, Luis & Durán Santomil, Pablo & Mulet Forteza, Carlos, 2023. "How to accomplish a highly cited paper in the tourism, leisure and hospitality field," Journal of Business Research, Elsevier, vol. 157(C).
    3. Elizabeth S. Vieira, 2023. "The influence of research collaboration on citation impact: the countries in the European Innovation Scoreboard," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3555-3579, June.
    4. Fan, Lingxu & Guo, Lei & Wang, Xinhua & Xu, Liancheng & Liu, Fangai, 2022. "Does the author’s collaboration mode lead to papers’ different citation impacts? An empirical analysis based on propensity score matching," Journal of Informetrics, Elsevier, vol. 16(4).
    5. Yifan Qian & Wenge Rong & Nan Jiang & Jie Tang & Zhang Xiong, 2017. "Citation regression analysis of computer science publications in different ranking categories and subfields," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1351-1374, March.
    6. Ke, Qing, 2020. "Technological impact of biomedical research: The role of basicness and novelty," Research Policy, Elsevier, vol. 49(7).
    7. Tian Yu & Guang Yu & Peng-Yu Li & Liang Wang, 2014. "Citation impact prediction for scientific papers using stepwise regression analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1233-1252, November.
    8. Mingyang Wang & Zhenyu Wang & Guangsheng Chen, 2019. "Which can better predict the future success of articles? Bibliometric indices or alternative metrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1575-1595, June.
    9. Basma Albanna & Julia Handl & Richard Heeks, 2021. "Publication outperformance among global South researchers: An analysis of individual-level and publication-level predictors of positive deviance," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8375-8431, October.
    10. Yezhu Wang & Yundong Xie & Dong Wang & Lu Guo & Rongting Zhou, 2022. "Do cover papers get better citations and usage counts? An analysis of 42 journals in cell biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3793-3813, July.
    11. Dongyu Zang & Chunli Liu, 2023. "Exploring the clinical translation intensity of papers published by the world’s top scientists in basic medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(4), pages 2371-2416, April.
    12. Tahamtan, Iman & Bornmann, Lutz, 2018. "Core elements in the process of citing publications: Conceptual overview of the literature," Journal of Informetrics, Elsevier, vol. 12(1), pages 203-216.
    13. Danielle H. Lee, 2019. "Predictive power of conference-related factors on citation rates of conference papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 281-304, January.
    14. Thelwall, Mike & Wilson, Paul, 2014. "Regression for citation data: An evaluation of different methods," Journal of Informetrics, Elsevier, vol. 8(4), pages 963-971.
    15. Radhamany Sooryamoorthy, 2017. "Do types of collaboration change citation? A scientometric analysis of social science publications in South Africa," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 379-400, April.
    16. Li, Xin & Wen, Yang & Jiang, Jiaojiao & Daim, Tugrul & Huang, Lucheng, 2022. "Identifying potential breakthrough research: A machine learning method using scientific papers and Twitter data," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Lindahl, Jonas, 2018. "Predicting research excellence at the individual level: The importance of publication rate, top journal publications, and top 10% publications in the case of early career mathematicians," Journal of Informetrics, Elsevier, vol. 12(2), pages 518-533.
    18. Yu-Wei Chang, 2021. "Characteristics of high research performance authors in the field of library and information science and those of their articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3373-3391, April.
    19. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    20. Abramo, Giovanni & D’Angelo, Ciriaco Andrea, 2015. "The relationship between the number of authors of a publication, its citations and the impact factor of the publishing journal: Evidence from Italy," Journal of Informetrics, Elsevier, vol. 9(4), pages 746-761.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:14:y:2020:i:1:s1751157719303025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.