IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v63y2012i11p2239-2253.html
   My bibliography  Save this article

Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed

Author

Listed:
  • Loet Leydesdorff
  • Daniele Rotolo
  • Ismael Rafols

Abstract

Multiple perspectives on the nonlinear processes of medical innovations can be distinguished and combined using the Medical Subject Headings (MeSH) of the MEDLINE database. Focusing on three main branches—“diseases,” “drugs and chemicals,” and “techniques and equipment”—we use base maps and overlay techniques to investigate the translations and interactions and thus to gain a bibliometric perspective on the dynamics of medical innovations. To this end, we first analyze the MEDLINE database, the MeSH index tree, and the various options for a static mapping from different perspectives and at different levels of aggregation. Following a specific innovation (RNA interference) over time, the notion of a trajectory which leaves a signature in the database is elaborated. Can the detailed index terms describing the dynamics of research be used to predict the diffusion dynamics of research results? Possibilities are specified for further integration between the MEDLINE database on one hand, and the Science Citation Index and Scopus (containing citation information) on the other.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Loet Leydesdorff & Daniele Rotolo & Ismael Rafols, 2012. "Bibliometric perspectives on medical innovation using the medical subject Headings of PubMed," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(11), pages 2239-2253, November.
  • Handle: RePEc:bla:jinfst:v:63:y:2012:i:11:p:2239-2253
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/asi.22715
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bornmann, Lutz & Marx, Werner & Schier, Hermann & Rahm, Erhard & Thor, Andreas & Daniel, Hans-Dieter, 2009. "Convergent validity of bibliometric Google Scholar data in the field of chemistry—Citation counts for papers that were accepted by Angewandte Chemie International Edition or rejected but published els," Journal of Informetrics, Elsevier, vol. 3(1), pages 27-35.
    2. Loet Leydesdorff & Olle Persson, 2010. "Mapping the geography of science: Distribution patterns and networks of relations among cities and institutes," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(8), pages 1622-1634, August.
    3. Per Ahlgren & Bo Jarneving & Ronald Rousseau, 2003. "Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 54(6), pages 550-560, April.
    4. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    5. Ismael Rafols & Alan L. Porter & Loet Leydesdorff, 2010. "Science overlay maps: A new tool for research policy and library management," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(9), pages 1871-1887, September.
    6. Loet Leydesdorff & Björn Hammarfelt & Almila Salah, 2011. "The structure of the Arts & Humanities Citation Index: A mapping on the basis of aggregated citations among 1,157 journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(12), pages 2414-2426, December.
    7. Diana Hicks & Jian Wang, 2011. "Coverage and overlap of the new social sciences and humanities journal lists," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(2), pages 284-294, February.
    8. Zvi Griliches, 1998. "Productivity, R&D, and the Data Constraint," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 347-374, National Bureau of Economic Research, Inc.
    9. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    10. Lutz Bornmann & Loet Leydesdorff, 2011. "Which cities produce more excellent papers than can be expected? A new mapping approach, using Google Maps, based on statistical significance testing," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1954-1962, October.
    11. Andrew Fire & SiQun Xu & Mary K. Montgomery & Steven A. Kostas & Samuel E. Driver & Craig C. Mello, 1998. "Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans," Nature, Nature, vol. 391(6669), pages 806-811, February.
    12. Soete, Luc & Weel, Bas ter, 1999. "Schumpeter and the Knowledge-Based Economy: On Technology and Competition Policy," Research Memorandum 004, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    13. von Hippel, Eric, 1976. "The dominant role of users in the scientific instrument innovation process," Research Policy, Elsevier, vol. 5(3), pages 212-239, July.
    14. Loet Leydesdorff & Lutz Bornmann, 2011. "Integrated impact indicators compared with impact factors: An alternative research design with policy implications," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(11), pages 2133-2146, November.
    15. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    16. Jonas Lundberg & Anette Fransson & Mats Brommels & John Sk?r & Inger Lundkvist, 2006. "Is it better or just the same? Article identification strategies impact bibliometric assessments," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(1), pages 183-197, January.
    17. Wolfgang Glänzel & Martin Meyer, 2003. "Patents cited in the scientific literature: An exploratory study of 'reverse' citation relations," Scientometrics, Springer;Akadémiai Kiadó, vol. 58(2), pages 415-428, October.
    18. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    19. Loet Leydesdorff & Ismael Rafols, 2009. "A global map of science based on the ISI subject categories," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(2), pages 348-362, February.
    20. Narin, Francis & Olivastro, Dominic, 1992. "Status report: Linkage between technology and science," Research Policy, Elsevier, vol. 21(3), pages 237-249, June.
    21. Grupp, Hariolf, 1996. "Spillover Effects and the Science Base of Innovations Reconsidered: An Empirical Approach," Journal of Evolutionary Economics, Springer, vol. 6(2), pages 175-197, May.
    22. Chris Freeman & Luc Soete, 1997. "The Economics of Industrial Innovation, 3rd Edition," MIT Press Books, The MIT Press, edition 3, volume 1, number 0262061953, April.
    23. Diana Hicks & Jian Wang, 2011. "Coverage and overlap of the new social sciences and humanities journal lists," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(2), pages 284-294, February.
    24. Boyack, Kevin W. & Klavans, Richard, 2008. "Measuring science–technology interaction using rare inventor–author names," Journal of Informetrics, Elsevier, vol. 2(3), pages 173-182.
    25. Leydesdorff, Loet & Rafols, Ismael, 2012. "Interactive overlays: A new method for generating global journal maps from Web-of-Science data," Journal of Informetrics, Elsevier, vol. 6(2), pages 318-332.
    26. Allan P. O. Williams, 2006. "Impact of Strategies," Palgrave Macmillan Books, in: The Rise of Cass Business School, chapter 13, pages 167-181, Palgrave Macmillan.
    27. Loet Leydesdorff, 2008. "Patent classifications as indicators of intellectual organization," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(10), pages 1582-1597, August.
    28. Carmen López-Illescas & Ed C.M. Noyons & Martijn S. Visser & Félix De Moya-Anegón & Henk F. Moed, 2009. "Expansion of scientific journal categories using reference analysis: How can it be done and does it make a difference?," Scientometrics, Springer;Akadémiai Kiadó, vol. 79(3), pages 473-490, June.
    29. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    2. Ryosuke L. Ohniwa & Aiko Hibino, 2019. "Generating process of emerging topics in the life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1549-1561, December.
    3. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    4. Daniele Rotolo & Loet Leydesdorff, 2014. "Matching MEDLINE/PubMed Data with Web of Science (WOS): A Routine in R language," SPRU Working Paper Series 2014-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    5. Nicola Grassano & Daniele Rotolo & Joshua Hutton & Frédérique Lang & Michael M. Hopkins, 2017. "Funding Data from Publication Acknowledgments: Coverage, Uses, and Limitations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(4), pages 999-1017, April.
    6. Yaqub, Ohid & Coburn, Josie & Moore, Duncan A.Q., 2023. "Knowledge spillovers from HIV research-funding," SocArXiv gcuhn, Center for Open Science.
    7. Kevin W. Boyack, 2017. "Thesaurus-based methods for mapping contents of publication sets," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1141-1155, May.
    8. Jochen Gläser & Wolfgang Glänzel & Andrea Scharnhorst, 2017. "Same data—different results? Towards a comparative approach to the identification of thematic structures in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 981-998, May.
    9. Ávila-Robinson, Alfonso & Islam, Nazrul & Sengoku, Shintaro, 2019. "Co-evolutionary and systemic study on the evolution of emerging stem cell-based therapies," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 324-339.
    10. Loet Leydesdorff & Jordan A. Comins & Aaron A. Sorensen & Lutz Bornmann & Iina Hellsten, 2016. "Cited references and Medical Subject Headings (MeSH) as two different knowledge representations: clustering and mappings at the paper level," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2077-2091, December.
    11. Seolmin Yang & So Young Kim, 2023. "Knowledge-integrated research is more disruptive when supported by homogeneous funding sources: a case of US federally funded research in biomedical and life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3257-3282, June.
    12. Timothy D. Bowman & Andrew Tsou & Chaoqun Ni & Cassidy R. Sugimoto, 2014. "Post-interdisciplinary frames of reference: exploring permeability and perceptions of disciplinarity in the social sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1695-1714, December.
    13. Torres-Salinas, Daniel & Rodríguez-Sánchez, Rosa & Robinson-García, Nicolás & Fdez-Valdivia, J. & García, J.A., 2013. "Mapping citation patterns of book chapters in the Book Citation Index," Journal of Informetrics, Elsevier, vol. 7(2), pages 412-424.
    14. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    15. Goldman, Alyssa W., 2014. "Conceptualizing the interdisciplinary diffusion and evolution of emerging fields: The case of systems biology," Journal of Informetrics, Elsevier, vol. 8(1), pages 43-58.
    16. Ryosuke L. Ohniwa & Kunio Takeyasu & Aiko Hibino, 2022. "Researcher dynamics in the generation of emerging topics in life sciences and medicine," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(2), pages 871-884, February.
    17. Loet Leydesdorff, 2013. "Statistics for the dynamic analysis of scientometric data: the evolution of the sciences in terms of trajectories and regimes," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 731-741, September.
    18. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    19. Lv, Yanhua & Ding, Ying & Song, Min & Duan, Zhiguang, 2018. "Topology-driven trend analysis for drug discovery," Journal of Informetrics, Elsevier, vol. 12(3), pages 893-905.
    20. Gaetan de Rassenfosse & Kyle Higham & Orion Penner, 2022. "Scientific rewards for biomedical specialization are large and persistent," Working Papers 19, Chair of Science, Technology, and Innovation Policy.
    21. Ma, Jing & Abrams, Natalie F. & Porter, Alan L. & Zhu, Donghua & Farrell, Dorothy, 2019. "Identifying translational indicators and technology opportunities for nanomedical research using tech mining: The case of gold nanostructures," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 767-775.
    22. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loet Leydesdorff & Duncan Kushnir & Ismael Rafols, 2014. "Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC)," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1583-1599, March.
    2. Loet Leydesdorff & Lutz Bornmann, 2012. "Mapping (USPTO) patent data using overlays to Google Maps," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1442-1458, July.
    3. Leydesdorff, Loet & Rafols, Ismael, 2012. "Interactive overlays: A new method for generating global journal maps from Web-of-Science data," Journal of Informetrics, Elsevier, vol. 6(2), pages 318-332.
    4. Loet Leydesdorff & Stephen Carley & Ismael Rafols, 2013. "Global maps of science based on the new Web-of-Science categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 589-593, February.
    5. Daniele Rotolo & Ismael Rafols & Michael Hopkins & Loet Leydesdorff, 2014. "Scientometric Mapping as a Strategic Intelligence Tool for the Governance of Emerging Technologies," SPRU Working Paper Series 2014-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    6. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    7. Xiaozan Lyu & Ping Zhou & Loet Leydesdorff, 2020. "Eco-system mapping of techno-science linkages at the level of scholarly journals and fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2037-2055, September.
    8. Loet Leydesdorff & Jordan A. Comins & Aaron A. Sorensen & Lutz Bornmann & Iina Hellsten, 2016. "Cited references and Medical Subject Headings (MeSH) as two different knowledge representations: clustering and mappings at the paper level," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 2077-2091, December.
    9. Loet Leydesdorff, 2013. "Statistics for the dynamic analysis of scientometric data: the evolution of the sciences in terms of trajectories and regimes," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 731-741, September.
    10. Gómez-Núñez, Antonio J. & Batagelj, Vladimir & Vargas-Quesada, Benjamín & Moya-Anegón, Félix & Chinchilla-Rodríguez, Zaida, 2014. "Optimizing SCImago Journal & Country Rank classification by community detection," Journal of Informetrics, Elsevier, vol. 8(2), pages 369-383.
    11. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    12. Rafols, Ismael & Leydesdorff, Loet & O’Hare, Alice & Nightingale, Paul & Stirling, Andy, 2012. "How journal rankings can suppress interdisciplinary research: A comparison between Innovation Studies and Business & Management," Research Policy, Elsevier, vol. 41(7), pages 1262-1282.
    13. Jielan Ding & Per Ahlgren & Liying Yang & Ting Yue, 2018. "Disciplinary structures in Nature, Science and PNAS: journal and country levels," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1817-1852, September.
    14. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    15. Leydesdorff, Loet & Bornmann, Lutz & Zhou, Ping, 2016. "Construction of a pragmatic base line for journal classifications and maps based on aggregated journal-journal citation relations," Journal of Informetrics, Elsevier, vol. 10(4), pages 902-918.
    16. Kevin W. Boyack, 2017. "Thesaurus-based methods for mapping contents of publication sets," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1141-1155, May.
    17. Rongying Zhao & Bikun Chen, 2014. "Applying author co-citation analysis to user interaction analysis: a case study on instant messaging groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 985-997, November.
    18. Loet Leydesdorff, 2013. "An evaluation of impacts in “Nanoscience & nanotechnology”: steps towards standards for citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 35-55, January.
    19. Ying Huang & Donghua Zhu & Qi Lv & Alan L. Porter & Douglas K. R. Robinson & Xuefeng Wang, 2017. "Early insights on the Emerging Sources Citation Index (ESCI): an overlay map-based bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 2041-2057, June.
    20. Loet Leydesdorff & Floortje Alkemade & Gaston Heimeriks & Rinke Hoekstra, 2015. "Patents as instruments for exploring innovation dynamics: geographic and technological perspectives on “photovoltaic cells”," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 629-651, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:63:y:2012:i:11:p:2239-2253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.