IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i2p124-d1562223.html
   My bibliography  Save this article

Gene Mining and Genetic Effect Analysis Reveal Novel Loci, TaZn-2DS Associated with Zinc Content in Wheat Grain

Author

Listed:
  • Zhuangzhuang Hong

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Zhankui Zeng

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Jiaojiao Li

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Xuefang Yan

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Junqiao Song

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Qunxiang Yan

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Qiong Li

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Yue Zhao

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Chang Liu

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Xueyan Jing

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

  • Chunping Wang

    (The Shennong Laboratory, Zhengzhou 450099, China
    College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China)

Abstract

Zinc is an essential microelement of enzymes and proteins in wheat grains and humans. A deficiency in zinc content can lead to decreased wheat yield and low zinc content in grains, which in turn leads to insufficient dietary zinc intake. One recombinant inbred line (RIL) population derived from crosses Avocet/Huites (AH population) was used to map QTL for grain zinc content (GZnC) using diversity array technology (DArT). Nine QTLs were identified on chromosomes 2D, 3B, 4A, 4D, 5A, 5B, 6A, 7A, and 7D. Among them, QGZn.haust-AH-2D was detected in multiple environments, accounting for 5.61% to 11.27% of the phenotypic variation with a physical interval of 13.62 Mb to 17.82 Mb. Meanwhile, a genome-wide association study (GWAS) (CH population) comprising 243 cultivars or advanced lines revealed some genetic loci associated with zinc content in the wheat 660K single-nucleotide polymorphism (SNP) array. This was also identified within the physical interval of 13.61 Mb to 15.12 Mb of chromosome 2D, which accounted for 8.99% to 11.58% of the phenotypic variation in five models. A high-throughput competitive allele specific PCR (KASP) marker was developed, which verified the wheat natural population (NA population). QGZn.haust-AH-2D was fine mapped into a narrow region named TaZn-2DS between KAZn-2D-3 and 1111273 at a physical distance of 2.70 Mb, and the genetic effect of TaZn-2DS was 11.43%. This study shows that TaZn-2DS is associated with zinc content, and develops KAZn-2D-3 markers for the genetic improvement of nutritional quality in wheat.

Suggested Citation

  • Zhuangzhuang Hong & Zhankui Zeng & Jiaojiao Li & Xuefang Yan & Junqiao Song & Qunxiang Yan & Qiong Li & Yue Zhao & Chang Liu & Xueyan Jing & Chunping Wang, 2025. "Gene Mining and Genetic Effect Analysis Reveal Novel Loci, TaZn-2DS Associated with Zinc Content in Wheat Grain," Agriculture, MDPI, vol. 15(2), pages 1-16, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:2:p:124-:d:1562223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/2/124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/2/124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaolei Liu & Meng Huang & Bin Fan & Edward S Buckler & Zhiwu Zhang, 2016. "Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 12(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangbao Guo & Guoqi Qian & Lu Lin & Wei Shao, 2021. "Parallel inference for big data with the group Bayesian method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 225-243, February.
    2. Ganwen Zhang & Jianini Zhao & Jieru Wang & Guo Lin & Lin Li & Fengfei Ban & Meiting Zhu & Yangjun Wen & Jin Zhang, 2024. "An Improved Expectation–Maximization Bayesian Algorithm for GWAS," Mathematics, MDPI, vol. 12(13), pages 1-14, June.
    3. Prabin Bajgain & James A. Anderson, 2021. "Multi-Allelic Haplotype-Based Association Analysis Identifies Genomic Regions Controlling Domestication Traits in Intermediate Wheatgrass," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    4. Xubin Lu & Hui Jiang & Abdelaziz Adam Idriss Arbab & Bo Wang & Dingding Liu & Ismail Mohamed Abdalla & Tianle Xu & Yujia Sun & Zongping Liu & Zhangping Yang, 2023. "Investigating Genetic Characteristics of Chinese Holstein Cow’s Milk Somatic Cell Score by Genetic Parameter Estimation and Genome-Wide Association," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    5. Zhaoxuan Che & Jiakun Qiao & Fangjun Xu & Xinyun Li & Yunxia Zhao & Mengjin Zhu, 2024. "Integrated Analysis Reveals Genetic Basis of Growth Curve Parameters in an F 2 Designed Pig Population Based on Genome and Transcriptome Data," Agriculture, MDPI, vol. 14(10), pages 1-18, September.
    6. Alemayehu Teressa Negawo & Meki Shehabu Muktar & Ricardo Alonso Sánchez Gutiérrez & Ermias Habte & Alice Muchugi & Chris S. Jones, 2024. "A Genome-Wide Association Study of Biomass Yield and Feed Quality in Buffel Grass ( Cenchrus ciliaris L.)," Agriculture, MDPI, vol. 14(2), pages 1-27, February.
    7. Lanzhi Li & Xingfei Zheng & Jiabo Wang & Xueli Zhang & Xiaogang He & Liwen Xiong & Shufeng Song & Jing Su & Ying Diao & Zheming Yuan & Zhiwu Zhang & Zhongli Hu, 2023. "Joint analysis of phenotype-effect-generation identifies loci associated with grain quality traits in rice hybrids," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Justin N. Vaughn & Sandra E. Branham & Brian Abernathy & Amanda M. Hulse-Kemp & Adam R. Rivers & Amnon Levi & William P. Wechter, 2022. "Graph-based pangenomics maximizes genotyping density and reveals structural impacts on fungal resistance in melon," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Hai Anh Tran & Hyun Jo & Thi Cuc Nguyen & Jeong-Dong Lee & Hak Soo Seo & Jong Tae Song, 2024. "Genome-Wide Association Analysis for Submergence Tolerance at the Early Vegetative and Germination Stages in Wild Soybean ( Glycine soja )," Agriculture, MDPI, vol. 14(9), pages 1-17, September.
    10. Zhanwei Zhuang & Shaoyun Li & Rongrong Ding & Ming Yang & Enqin Zheng & Huaqiang Yang & Ting Gu & Zheng Xu & Gengyuan Cai & Zhenfang Wu & Jie Yang, 2019. "Meta-analysis of genome-wide association studies for loin muscle area and loin muscle depth in two Duroc pig populations," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-21, June.
    11. Gianola, Daniel & Fernando, Rohan L. & Schön, Chris-Carolin, 2020. "Inferring trait-specific similarity among individuals from molecular markers and phenotypes with Bayesian regression," Theoretical Population Biology, Elsevier, vol. 132(C), pages 47-59.
    12. Xiaojun Mao & Somak Dutta & Raymond K. W. Wong & Dan Nettleton, 2020. "Adjusting for Spatial Effects in Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 699-718, December.
    13. Yue Xin & Lina Gao & Wenming Hu & Qi Gao & Bin Yang & Jianguo Zhou & Cuilian Xu, 2022. "Genome-Wide Association Study Based on Plant Height and Drought-Tolerance Indices Reveals Two Candidate Drought-Tolerance Genes in Sweet Sorghum," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    14. Uğur Sesiz, 2023. "Deciphering Genomic Regions and Putative Candidate Genes for Grain Size and Shape Traits in Durum Wheat through GWAS," Agriculture, MDPI, vol. 13(10), pages 1-17, September.
    15. Cox Lwaka Tamba & Yuan-Li Ni & Yuan-Ming Zhang, 2017. "Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    16. Gaia Cortinovis & Leonardo Vincenzi & Robyn Anderson & Giovanni Marturano & Jacob Ian Marsh & Philipp Emanuel Bayer & Lorenzo Rocchetti & Giulia Frascarelli & Giovanna Lanzavecchia & Alice Pieri & And, 2024. "Adaptive gene loss in the common bean pan-genome during range expansion and domestication," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Girma Mengistu & Hussein Shimelis & Ermias Assefa & Dagnachew Lule, 2021. "Genome-wide association analysis of anthracnose resistance in sorghum [Sorghum bicolor (L.) Moench]," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-15, December.
    18. Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:2:p:124-:d:1562223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.