IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i7p1128-d1433754.html
   My bibliography  Save this article

Interactive Effect of Cover Crop, Irrigation Regime, and Crop Phenology on Thrips Population Dynamics and Plant Growth Parameters in Upland Cotton

Author

Listed:
  • Raju Sapkota

    (Cotton Entomology Program, Texas A&M AgriLife Research, Lubbock, TX 77843, USA)

  • Megha N. Parajulee

    (Cotton Entomology Program, Texas A&M AgriLife Research, Lubbock, TX 77843, USA)

  • Kenwyn R. Cradock

    (University Advisement and Enrichment Center, University of New Mexico, Albuquerque, NM 87131, USA)

Abstract

Cotton ( Gossypium hirsutum ) requires a long growing period for fruit and fiber maturation, making it vulnerable to insect pests, thus affecting the seed cotton yield and fiber quality. Cotton-feeding thrips (Thysanoptera: Thripidae) are one of the major insects impacting cotton yield throughout the U.S. cotton belt and worldwide. A two-year field research conducted at Texas A&M AgriLife Research farm in west Texas, USA quantified the interactive effect of three cover crops [wheat ( Triticum aestivum) , rye ( Secale cereale ), and no cover] and three irrigation regimes [rainfed, deficit irrigation (30%) and full irrigation] on thrips population dynamics across the phenologically susceptible stages of upland cotton and resulting impact on plant growth and yield parameters. Temporal densities of thrips, feeding injury from thrips, cotton growth and reproductive profiles, yield, and fiber quality varied with cover crops and irrigation levels. Thrips densities were conspicuously low due to harsh weather conditions, but the densities decreased with an increase in plant age. Terminated rye and wheat cover versus conventional-tilled, no-cover treatments showed marginal effects on thrips colonization and population dynamics. Similarly, full irrigation treatment supported higher thrips densities compared to rainfed and deficit irrigation treatments. Immature thrips densities increased through the successive sampling periods, indicating increased thrips reproduction following the initial colonization. Thrips feeding injury was significantly greater in no-cover plots in the early seedling stage, but the effect was insignificant across all cover crop treatments in subsequent sampling dates. The results of this study demonstrated increased seedling vigor, plant height, and flower densities in terminated cover crop plots across all irrigation regimes compared to that in no-cover plots. However, the cover crop x irrigation interaction significantly impacted the cotton lint yield, with increased lint yield on cover crop treatments. This study clearly demonstrates the value of cover crops in semi-arid agricultural production systems that are characterized by low rainfall, reduced irrigation capacity, and wind erosion of topsoil.

Suggested Citation

  • Raju Sapkota & Megha N. Parajulee & Kenwyn R. Cradock, 2024. "Interactive Effect of Cover Crop, Irrigation Regime, and Crop Phenology on Thrips Population Dynamics and Plant Growth Parameters in Upland Cotton," Agriculture, MDPI, vol. 14(7), pages 1-23, July.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:7:p:1128-:d:1433754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/7/1128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/7/1128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. DeLaune, P.B & Mubvumba, P. & Ale, S. & Kimura, E., 2020. "Impact of no-till, cover crop, and irrigation on Cotton yield," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Dagdelen, N. & Basal, H. & YIlmaz, E. & Gürbüz, T. & Akçay, S., 2009. "Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey," Agricultural Water Management, Elsevier, vol. 96(1), pages 111-120, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    3. Ping Wang & Zhenyong Zhao & Lei Wang & Changyan Tian, 2021. "Comparison of Efficiency-Enhanced Management and Conventional Management of Irrigation and Nitrogen Fertilization in Cotton Fields of Northwestern China," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    4. Hafiz Shahzad Ahmad & Muhammad Imran & Fiaz Ahmad & Shah Rukh & Rao Muhammad Ikram & Hafiz Muhammad Rafique & Zafar Iqbal & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali & Tanve, 2021. "Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production," Sustainability, MDPI, vol. 13(7), pages 1-12, April.
    5. Papastylianou, Panayiota T. & Argyrokastritis, Ioannis G., 2014. "Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 142(C), pages 127-134.
    6. Sampathkumar, T. & Pandian, B.J. & Rangaswamy, M.V. & Manickasundaram, P. & Jeyakumar, P., 2013. "Influence of deficit irrigation on growth, yield and yield parameters of cotton–maize cropping sequence," Agricultural Water Management, Elsevier, vol. 130(C), pages 90-102.
    7. Eleni Tsaliki & Romain Loison & Apostolos Kalivas & Ioannis Panoras & Ioannis Grigoriadis & Abdou Traore & Jean-Paul Gourlot, 2023. "Cotton Cultivation in Greece under Sustainable Utilization of Inputs," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    8. Ali Reza Seifzadeh & Mohammad Reza Khaledian & Mohsen Zavareh & Parisha Shahinrokhsar & Christos A. Damalas, 2020. "European Borage ( Borago officinalis L.) Yield and Profitability under Different Irrigation Systems," Agriculture, MDPI, vol. 10(4), pages 1-13, April.
    9. Wang, Ruoshui & Wan, Shuqin & Kang, Yaohu & Dou, Chaoyin, 2014. "Assessment of secondary soil salinity prevention and economic benefit under different drip line placement and irrigation regime in northwest China," Agricultural Water Management, Elsevier, vol. 131(C), pages 41-49.
    10. Singh, Yudhveer & Rao, Sajjan Singh & Regar, Panna Lal, 2010. "Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment," Agricultural Water Management, Elsevier, vol. 97(7), pages 965-970, July.
    11. Jianping Yang & Chunping Tan & Shijin Wang & Shengxia Wang & Yuan Yang & Hongju Chen, 2015. "Drought Adaptation in the Ningxia Hui Autonomous Region, China: Actions, Planning, Pathways and Barriers," Sustainability, MDPI, vol. 7(11), pages 1-28, November.
    12. O’Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D., 2015. "Dynamic prescription maps for site-specific variable rate irrigation of cotton," Agricultural Water Management, Elsevier, vol. 159(C), pages 123-138.
    13. Liu, Yi & Hu, Yue & Wei, Chenchen & Zeng, Wenzhi & Huang, Jiesheng & Ao, Chang, 2024. "Synergistic regulation of irrigation and drainage based on crop salt tolerance and leaching threshold," Agricultural Water Management, Elsevier, vol. 292(C).
    14. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).
    15. Zounemat-Kermani, M. & Asadi, R., 2018. "Technical and economic evaluation of the deficit irrigation on yield of cotton," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277067, International Association of Agricultural Economists.
    16. Guan, Hongjie & Li, Jiusheng & Li, Yanfeng, 2013. "Effects of drip system uniformity and irrigation amount on cotton yield and quality under arid conditions," Agricultural Water Management, Elsevier, vol. 124(C), pages 37-51.
    17. Niamat Ullah Khan & Aftab Ahmad Khan & Muhammad Arif Goheer & Izwa Shafique & Sadam Hussain & Saddam Hussain & Talha Javed & Maliha Naz & Rubab Shabbir & Ali Raza & Faisal Zulfiqar & Freddy Mora-Poble, 2021. "Effect of Zero and Minimum Tillage on Cotton Productivity and Soil Characteristics under Different Nitrogen Application Rates," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    18. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Sima, Matthew W. & Zeng, Fanjiang & Li, Lanhai & Li, Xiangyi & Gu, Zhe, 2020. "Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate," Agricultural Water Management, Elsevier, vol. 234(C).
    19. Rao, Sajjan Singh & Tanwar, Suresh Pal Singh & Regar, Panna Lal, 2016. "Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment," Agricultural Water Management, Elsevier, vol. 169(C), pages 14-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:7:p:1128-:d:1433754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.