IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i4p136-d347983.html
   My bibliography  Save this article

European Borage ( Borago officinalis L.) Yield and Profitability under Different Irrigation Systems

Author

Listed:
  • Ali Reza Seifzadeh

    (Department of Water Engineering, Faculty of Agricultural Science, University of Guilan, Rasht 41635-1314, Iran)

  • Mohammad Reza Khaledian

    (Department of Water Engineering, Faculty of Agricultural Science, University of Guilan, Rasht 41635-1314, Iran
    Department of Water Engineering and Environment, Caspian Sea Basin Research Center, University of Guilan, Rasht 41635-3756, Iran)

  • Mohsen Zavareh

    (Department of Agronomy & Plant Breeding, Faculty of Agricultural Science, University of Guilan, Rasht 41635-1314, Iran)

  • Parisha Shahinrokhsar

    (Agricultural Engineering Research Department, Guilan Agricultural and Natural Resources Research and Education Center, AREEO, Rasht 41635-3394, Iran)

  • Christos A. Damalas

    (Department of Agricultural Development, Democritus University of Thrace, GR-68200 Orestiada, Greece)

Abstract

European borage ( Borago officinalis L.) is a cultivated medicinal plant in Iran, but common agronomic practices about profitable cultivation are mostly unknown. A 2-yr field experiment (2013 and 2014) was conducted in Guilan Province of northern Iran to evaluate European borage yield and profitability under irrigation with surface and drip irrigation systems. Treatments included (i) rainfed production (I0, control), (ii) single irrigation (I1) applied with surface irrigation alone and drip irrigation alone, and (iii) two irrigations (I2) applied with surface irrigation alone and drip irrigation alone. In 2013, I1 increased flower dry weight by 41.0% and seed weight by 7.1% compared with rainfed European borage, while with I2, the increases in those traits were 23.4% and 0.6%, respectively. In 2014, I1 increased flower dry weight by 78.0% and seed weight by 21.3% compared with rainfed European borage, while the respective increases were 51.8% and 17.3% with I2. On average, drip irrigation provided higher flower dry weight and seed weight by 39.3% and 12.6%, respectively, compared with surface irrigation. Drip irrigation increased variable costs by 165.2% compared with surface irrigation but resulted in increased gross income by 23.2%. Partial budgeting showed that I1 with drip irrigation provided the maximum net profit in both years. Based on the final rate of return, investing in the treatment I1 with drip irrigation was better than investing in the other treatments. Moreover, I1 with drip irrigation showed the highest value of economic water productivity and could be considered for improving the net income of European borage farmers.

Suggested Citation

  • Ali Reza Seifzadeh & Mohammad Reza Khaledian & Mohsen Zavareh & Parisha Shahinrokhsar & Christos A. Damalas, 2020. "European Borage ( Borago officinalis L.) Yield and Profitability under Different Irrigation Systems," Agriculture, MDPI, vol. 10(4), pages 1-13, April.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:4:p:136-:d:347983
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/4/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/4/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hadizadeh, Faramarz & Allahyari, Mohammad S. & Damalas, Christos A. & Yazdani, Mohammad Reza, 2018. "Integrated management of agricultural water resources among paddy farmers in northern Iran," Agricultural Water Management, Elsevier, vol. 200(C), pages 19-26.
    2. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    3. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," Book Chapters,, International Water Management Institute.
    4. Panigrahi, P. & Srivastava, A.K. & Huchche, A.D., 2012. "Effects of drip irrigation regimes and basin irrigation on Nagpur mandarin agronomical and physiological performance," Agricultural Water Management, Elsevier, vol. 104(C), pages 79-88.
    5. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    6. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," IWMI Books, Reports H032641, International Water Management Institute.
    7. Dagdelen, N. & Basal, H. & YIlmaz, E. & Gürbüz, T. & Akçay, S., 2009. "Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey," Agricultural Water Management, Elsevier, vol. 96(1), pages 111-120, January.
    8. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinz, Malve & Galetti, Valeria & Holzkämper, Annelie, 2024. "How to find alternative crops for climate-resilient regional food production," Agricultural Systems, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giordano, Meredith & Turral, H. & Scheierling, S. M. & Treguer, D. O. & McCornick, Peter G, 2017. "Beyond “More Crop per Drop”: evolving thinking on agricultural water productivity," IWMI Research Reports 257962, International Water Management Institute.
    2. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    3. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    4. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    5. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Sasidharan, Renjith Puthiyedathu & Yadav, Bhagirath Mal & Kumar, Mahesh & Santra, Priyabrata & Yadava, Narendra Dev & Yadav, Om Parka, 2017. "Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 232-245.
    6. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    7. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," IWMI Books, Reports H042635, International Water Management Institute.
    8. Amarasinghe, Upali A. & Sharma, Bharat R., 2009. "Water productivity of food grains in India: exploring potential improvements," Book Chapters,, International Water Management Institute.
    9. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    10. Masikati, P. & Manschadi, A. & van Rooyen, A. & Hargreaves, J., 2014. "Maize–mucuna rotation: An alternative technology to improve water productivity in smallholder farming systems," Agricultural Systems, Elsevier, vol. 123(C), pages 62-70.
    11. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    12. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    13. Jinxia Wang & Henning Bjornlund & K. K. Klein & Lijuan Zhang & Wencui Zhang, 2016. "Factors that Influence the Rate and Intensity of Adoption of Improved Irrigation Technologies in Alberta, Canada," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-32, September.
    14. Garci­a-Vila, M. & Lorite, I.J. & Soriano, M.A. & Fereres, E., 2008. "Management trends and responses to water scarcity in an irrigation scheme of Southern Spain," Agricultural Water Management, Elsevier, vol. 95(4), pages 458-468, April.
    15. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    16. Nyakudya, I.W. & Stroosnijder, L., 2011. "Water management options based on rainfall analysis for rainfed maize (Zea mays L.) production in Rushinga district, Zimbabwe," Agricultural Water Management, Elsevier, vol. 98(10), pages 1649-1659, August.
    17. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    18. Hossain, Istiaque & Siwar, Chamhuri & Bin Mokhta, Mazlin & Dey, Madan Mohan & Jaafar, Abd. Hamid & Alam, Md. Mahmudul, 2019. "Water Productivity for Boro Rice Production: Study on floodplain Beels in Rajshahi, Bangladesh," OSF Preprints tm9na, Center for Open Science.
    19. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    20. Mansour, Elsayed & Desoky, El-Sayed M. & Ali, Mohamed M.A. & Abdul-Hamid, Mohamed I. & Ullah, Hayat & Attia, Ahmed & Datta, Avishek, 2021. "Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:4:p:136-:d:347983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.