IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i6p956-d1417294.html
   My bibliography  Save this article

Effect of Split Basal Fertilisation and Top-Dressing on Relative Chlorophyll Content and Yield of Maize Hybrids

Author

Listed:
  • Péter Zagyi

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

  • Éva Horváth

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

  • Gyula Vasvári

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

  • Károly Simon

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

  • Adrienn Széles

    (Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary)

Abstract

The aim of this study was to determine the nitrogen requirement of maize, the optimal timing and amount of nutrient application, based on long time series data. An additional objective was to examine the response of the relative chlorophyll content of maize to nitrogen fertilisation. The examinations were carried out in a long-term field experiment at the University of Debrecen between 2016 and 2022, using two maize hybrids with different genotypes. Spatial and temporal changes in the N status of maize leaves were monitored using the Soil and Plant Analysis Development (SPAD) instrument. In addition to the non-fertilised (A 0 ) treatment, six fertiliser treatments were applied (spring basal fertilisation: 60 and 120 kg N ha −1 , A 60 ; A 120 ). Basal fertilisation was followed by two occasions of top-dressing at phenological stages V6 and V12, at rates of +30–30 kg N ha −1 (V6 90 and V6 150 , and V12 120 and V12 180 ). The CMR (Chlorophyll Meter Reading), averaged over the examined years, genotypes and fertiliser treatments, were lowest in the V6 phenological phase (40.23 ± 5.57, p < 0.05) and highest in R1 (49.91 ± 8.41, p < 0.05). A 120 fertiliser treatment increased the relative chlorophyll content by 5.11 compared to the non-fertilised treatment, 1.67 more than A60 treatment. The basal fertilisation treatment substantially increased the yield (A 60 : +30.75%; A 120 : +66.68%) compared to the A 0 treatment averaged over years and genotypes. Based on the obtained research results, a basal treatment of 120 kg N ha −1 is recommended and it can be concluded that, under appropriate water supply conditions (rainfall, irrigation), nitrogen top-dressing applied in V6 phenophase results in a significant yield increase compared to basal fertilisation.

Suggested Citation

  • Péter Zagyi & Éva Horváth & Gyula Vasvári & Károly Simon & Adrienn Széles, 2024. "Effect of Split Basal Fertilisation and Top-Dressing on Relative Chlorophyll Content and Yield of Maize Hybrids," Agriculture, MDPI, vol. 14(6), pages 1-16, June.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:956-:d:1417294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/6/956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/6/956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olaf Erenstein & Moti Jaleta & Kai Sonder & Khondoker Mottaleb & B.M. Prasanna, 2022. "Global maize production, consumption and trade: trends and R&D implications," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1295-1319, October.
    2. Muschietti-Piana, Maria del Pilar & Cipriotti, Pablo Ariel & Urricariet, Susana & Peralta, Nahuel Raul & Niborski, Mauricio, 2018. "Using site-specific nitrogen management in rainfed corn to reduce the risk of nitrate leaching," Agricultural Water Management, Elsevier, vol. 199(C), pages 61-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Wendelin Wichtmann & Grzegorz Zając & Piotr Banaszuk, 2023. "Common Reed and Maize Silage Co-Digestion as a Pathway towards Sustainable Biogas Production," Energies, MDPI, vol. 16(2), pages 1-25, January.
    2. Mirosław Wyszkowski & Natalia Kordala, 2024. "Effects of Humic Acids on Calorific Value and Chemical Composition of Maize Biomass in Iron-Contaminated Soil Phytostabilisation," Energies, MDPI, vol. 17(7), pages 1-19, April.
    3. Kamila Nowosad & Jan Bocianowski & Farzad Kianersi & Alireza Pour-Aboughadareh, 2023. "Analysis of Linkage on Interaction of Main Aspects (Genotype by Environment Interaction, Stability and Genetic Parameters) of 1000 Kernels in Maize ( Zea mays L.)," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
    4. Yangjie Ren & Yitong Zhang & Shiyang Guo & Ben Wang & Siqi Wang & Wei Gao, 2023. "Pipe Cavitation Parameters Reveal Bubble Embolism Dynamics in Maize Xylem Vessels across Water Potential Gradients," Agriculture, MDPI, vol. 13(10), pages 1-17, September.
    5. Anna Barriviera & Diego Bosco & Sara Daniotti & Carlo Massimo Pozzi & Maria Elena Saija & Ilaria Re, 2023. "Assessing Farmers’ Willingness to Pay for Adopting Sustainable Corn Traits: A Choice Experiment in Italy," Sustainability, MDPI, vol. 15(18), pages 1-13, September.
    6. Lekarkar, Katoria & Nkwasa, Albert & Villani, Lorenzo & van Griensven, Ann, 2024. "Localizing agricultural impacts of 21st century climate pathways in data scarce catchments: A case study of the Nyando catchment, Kenya," Agricultural Water Management, Elsevier, vol. 294(C).
    7. Buttinelli, Rebecca & Cortignani, Raffaele & Caracciolo, Francesco, 2024. "Irrigation water economic value and productivity: An econometric estimation for maize grain production in Italy," Agricultural Water Management, Elsevier, vol. 295(C).
    8. Chen, Shichao & Parsons, David & Du, Taisheng & Kumar, Uttam & Wang, Sufen, 2021. "Simulation of yield and water balance using WHCNS and APSIM combined with geostatistics across a heterogeneous field," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Charlotte Cautereels & Jolien Smets & Jonas De Saeger & Lloyd Cool & Yanmei Zhu & Anna Zimmermann & Jan Steensels & Anton Gorkovskiy & Thomas B. Jacobs & Kevin J. Verstrepen, 2024. "Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Agata Borowik & Jadwiga Wyszkowska & Magdalena Zaborowska & Jan Kucharski, 2024. "Soil Enzyme Response and Calorific Value of Zea mays Used for the Phytoremediation of Soils Contaminated with Diesel Oil," Energies, MDPI, vol. 17(11), pages 1-22, May.
    11. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    12. Meng Wang & Haiming Duan & Cheng Zhou & Li Yu & Xiangtao Meng & Wenjie Lu & Haibing Yu, 2024. "Synergistic Effects of Chemical Fungicides with Crude Extracts from Bacillus amyloliquefaciens to Control Northern Corn Leaf Blight," Agriculture, MDPI, vol. 14(4), pages 1-16, April.
    13. Rafał Januszkiewicz & Grzegorz Kulczycki & Mateusz Samoraj, 2023. "Foliar Fertilization of Crop Plants in Polish Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-14, August.
    14. András Bence Szerb & Arnold Csonka & Imre Fertő, 2022. "Regional trade agreements, globalization, and global maize exports," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(10), pages 371-379.
    15. Mohammadi, Adel & Besharat, Sina & Abbasi, Fariborz, 2019. "Effects of irrigation and fertilization management on reducing nitrogen losses and increasing corn yield under furrow irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 1116-1129.
    16. Qu, Ziren & Luo, Ning & Guo, Jiameng & Xu, Jie & Wang, Pu & Meng, Qingfeng, 2024. "Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    17. Sergei Kharin & Zuzana Kapustova & Ivan Lichner, 2023. "Price transmission between maize and poultry product markets in the Visegrád Group countries: What is more nonlinear, egg or chicken?," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(12), pages 510-522.
    18. José Luis Villalpando-Aguilar & Daniel Francisco Chi-Maas & Itzel López-Rosas & Victor Ángel Aquino-Luna & Jesús Arreola-Enríquez & Julia Cristel Alcudia-Pérez & Gilberto Matos-Pech & Roberto Carlos G, 2022. "Urban Agriculture as an Alternative for the Sustainable Production of Maize and Peanut," Agriculture, MDPI, vol. 13(1), pages 1-13, December.
    19. Gao, Jia & Liu, Ninggang & Wang, Xianqi & Niu, Zuoyuan & Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling, 2024. "Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress," Agricultural Water Management, Elsevier, vol. 294(C).
    20. Arkadiusz Stępień & Katarzyna Wojtkowiak & Ewelina Kolankowska & Renata Pietrzak-Fiećko, 2024. "Corn Grain Fatty Acid Contents in Response to Organic Fertilisers from Meat Industry Waste," Sustainability, MDPI, vol. 16(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:6:p:956-:d:1417294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.