IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i4p608-d1374635.html
   My bibliography  Save this article

Investigating the Impacts of Wastewaters on Lettuce ( Lactuca sativa ) Seed Germination and Growth

Author

Listed:
  • Liam P. Reynolds

    (Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA)

  • Vitória F. C. Leme

    (Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA)

  • Paul C. Davidson

    (Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA)

Abstract

There is an opportunity for agriculture to utilize the many different waste streams in our world and capitalize on what would otherwise be viewed as waste products. Hydrothermal liquefaction (HTL) is an emerging technology for converting wet biomass to bio-crude oil, while aquaponics is a practice tracing back to indigenous communities around the world; both technologies have the potential to sustainably provide the necessary nutrients for crop growth. Food systems worldwide are actively transitioning to address the many challenges of climate change in a sustainable and efficient manner. Urban agriculture (UA) has the potential to generate localized crops in densely populated areas year-round, but has its challenges, involving high capital requirements, especially for vertical farming and controlled-environment agriculture, and being energy intensive due to artificial lighting and fossil fuel-based synthetic fertilizers. This study investigated the potential for aquaponic and HTL effluents to be used in hydroponic systems through a seed germination screening experiment. Buttercrunch lettuce ( Lactuca sativa L.) seeds were placed in Ziploc plastic bags on paper towels saturated with the wastewater treatments for 10 days while their total length of growth was routinely measured from the tip of the root to the tip of the cotyledons. The Chicago High School for Agricultural Sciences (CHSAS) aquaponic effluent with a 5.8× times higher nitrate concentration and 4.25× higher ammonia concentration outperformed the Bevier aquaponic effluent and improved any other source water it was combined with. Results also showed that seed germination was not inhibited in the presence of 2–8% solutions of hydrothermal liquefaction aqueous phase (HTL-AP), which performed on par with standard hydroponic fertilizer; solutions of a higher percentage, though, may lead to inhibitory effects in plants, and those of a lower percentage may not provide enough nutrients in the proper forms to sustain plant growth. However, the nutrient analyses revealed that there is still much to investigate regarding the combination of wastewaters to provide a complete, well-rounded, and sustainable source for hydroponic crop production.

Suggested Citation

  • Liam P. Reynolds & Vitória F. C. Leme & Paul C. Davidson, 2024. "Investigating the Impacts of Wastewaters on Lettuce ( Lactuca sativa ) Seed Germination and Growth," Agriculture, MDPI, vol. 14(4), pages 1-16, April.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:608-:d:1374635
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/4/608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/4/608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    2. Kathrin Specht & Rosemarie Siebert & Ina Hartmann & Ulf Freisinger & Magdalena Sawicka & Armin Werner & Susanne Thomaier & Dietrich Henckel & Heike Walk & Axel Dierich, 2014. "Urban agriculture of the future: an overview of sustainability aspects of food production in and on buildings," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(1), pages 33-51, March.
    3. da Silva Cuba Carvalho, Renata & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2018. "Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system," Agricultural Water Management, Elsevier, vol. 203(C), pages 311-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leena Erälinna & Barbara Szymoniuk, 2021. "Managing a Circular Food System in Sustainable Urban Farming. Experimental Research at the Turku University Campus (Finland)," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    2. Montero, J.I. & Baeza, E. & Heuvelink, E. & Rieradevall, J. & Muñoz, P. & Ercilla, M. & Stanghellini, C., 2017. "Productivity of a building-integrated roof top greenhouse in a Mediterranean climate," Agricultural Systems, Elsevier, vol. 158(C), pages 14-22.
    3. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    4. Devi Buehler & Ranka Junge, 2016. "Global Trends and Current Status of Commercial Urban Rooftop Farming," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    5. Michael Martin & Elvira Molin, 2019. "Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden," Sustainability, MDPI, vol. 11(15), pages 1-14, July.
    6. Mei Yin Ong & Nor-Insyirah Syahira Abdul Latif & Hui Yi Leong & Bello Salman & Pau Loke Show & Saifuddin Nomanbhay, 2019. "Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production," Energies, MDPI, vol. 12(18), pages 1-14, September.
    7. Muhammad Mumtaz Khan & Muhammad Tahir Akram & Rhonda Janke & Rashad Waseem Khan Qadri & Abdullah Mohammed Al-Sadi & Aitazaz A. Farooque, 2020. "Urban Horticulture for Food Secure Cities through and beyond COVID-19," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    8. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    9. Mireia Ercilla-Montserrat & David Sanjuan-Delmás & Esther Sanyé-Mengual & Laura Calvet-Mir & Karla Banderas & Joan Rieradevall & Xavier Gabarrell, 2019. "Analysis of the consumer’s perception of urban food products from a soilless system in rooftop greenhouses: a case study from the Mediterranean area of Barcelona (Spain)," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 36(3), pages 375-393, September.
    10. Kathrin Specht & Rosemarie Siebert & Susanne Thomaier, 2016. "Perception and acceptance of agricultural production in and on urban buildings (ZFarming): a qualitative study from Berlin, Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 33(4), pages 753-769, December.
    11. Jiheon Jun & Yi-Feng Su & James R. Keiser & John E. Wade & Michael D. Kass & Jack R. Ferrell & Earl Christensen & Mariefel V. Olarte & Dino Sulejmanovic, 2022. "Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    12. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    13. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.
    14. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
    16. Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
    17. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    18. Rui de Sousa & Luís Bragança & Manuela V. da Silva & Rui S. Oliveira, 2024. "Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics," Sustainability, MDPI, vol. 16(2), pages 1-22, January.
    19. Jeroen Degerickx & Martin Hermy & Ben Somers, 2020. "Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data," Sustainability, MDPI, vol. 12(5), pages 1-35, March.
    20. Garrett M. Broad & Wythe Marschall & Maya Ezzeddine, 2022. "Perceptions of high-tech controlled environment agriculture among local food consumers: using interviews to explore sense-making and connections to good food," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 417-433, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:608-:d:1374635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.