IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i11p1876-d1505269.html
   My bibliography  Save this article

Using UAV Images and Phenotypic Traits to Predict Potato Morphology and Yield in Peru

Author

Listed:
  • Dennis Ccopi

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande, Hualahoyo Km 8 Santa Ana, Huancayo 12007, Peru)

  • Kevin Ortega

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande, Hualahoyo Km 8 Santa Ana, Huancayo 12007, Peru)

  • Italo Castañeda

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande, Hualahoyo Km 8 Santa Ana, Huancayo 12007, Peru)

  • Claudia Rios

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande, Hualahoyo Km 8 Santa Ana, Huancayo 12007, Peru
    Facultad de Agronomía, Universidad Nacional de Centro del Perú, Carretera Central Km 37, El Mantaro, Jauja 12150, Peru)

  • Lucia Enriquez

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande, Hualahoyo Km 8 Santa Ana, Huancayo 12007, Peru)

  • Solanch Patricio

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande, Hualahoyo Km 8 Santa Ana, Huancayo 12007, Peru
    Facultad de Agronomía, Universidad Nacional de Centro del Perú, Carretera Central Km 37, El Mantaro, Jauja 12150, Peru)

  • Zoila Ore

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, Peru)

  • David Casanova

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, Peru)

  • Alex Agurto

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina, 1981, Lima 15024, Peru)

  • Noemi Zuñiga

    (Facultad de Agronomía, Universidad Nacional de Centro del Perú, Carretera Central Km 37, El Mantaro, Jauja 12150, Peru
    Programa Nacional de Raíces y Tuberosas, Estación Experimental Agraria Santa Ana, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande, Hualahoyo Km 8 Santa Ana, Huancayo 12007, Peru)

  • Julio Urquizo

    (Dirección de Desarrollo Tecnológico Agrario, Instituto Nacional de Innovación Agraria (INIA), Carretera Saños Grande, Hualahoyo Km 8 Santa Ana, Huancayo 12007, Peru
    Facultad de Agronomía, Universidad Nacional de Centro del Perú, Carretera Central Km 37, El Mantaro, Jauja 12150, Peru)

Abstract

Precision agriculture aims to improve crop management using advanced analytical tools. In this context, the objective of this study is to develop an innovative predictive model to estimate the yield and morphological quality, such as the circularity and length–width ratio of potato tubers, based on phenotypic characteristics of plants and data captured through spectral cameras equipped on UAVs. For this purpose, the experiment was carried out at the Santa Ana Experimental Station in the central Peruvian Andes, where advanced potato clones were planted in December 2023 under three levels of fertilization. Random Forest, XGBoost, and Support Vector Machine models were used to predict yield and quality parameters, such as circularity and the length–width ratio. The results showed that Random Forest and XGBoost achieved high accuracy in yield prediction (R 2 > 0.74). In contrast, the prediction of morphological quality was less accurate, with Random Forest standing out as the most reliable model (R 2 = 0.55 for circularity). Spectral data significantly improved the predictive capacity compared to agronomic data alone. We conclude that integrating spectral indices and multitemporal data into predictive models improved the accuracy in estimating yield and certain morphological traits, offering key opportunities to optimize agricultural management.

Suggested Citation

  • Dennis Ccopi & Kevin Ortega & Italo Castañeda & Claudia Rios & Lucia Enriquez & Solanch Patricio & Zoila Ore & David Casanova & Alex Agurto & Noemi Zuñiga & Julio Urquizo, 2024. "Using UAV Images and Phenotypic Traits to Predict Potato Morphology and Yield in Peru," Agriculture, MDPI, vol. 14(11), pages 1-23, October.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1876-:d:1505269
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/11/1876/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/11/1876/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dennis Ccopi-Trucios & Brissette Barzola-Rojas & Sheyla Ruiz-Soto & Edwin Gabriel-Campos & Kevin Ortega-Quispe & Franklin Cordova-Buiza, 2023. "River Flood Risk Assessment in Communities of the Peruvian Andes: A Semiquantitative Application for Disaster Prevention," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    2. Alejandra Arce & Stef de Haan & Henry Juarez & Dharani Dhar Burra & Franklin Plasencia & Raul Ccanto & Severin Polreich & Maria Scurrah, 2019. "The Spatial-Temporal Dynamics of Potato Agrobiodiversity in the Highlands of Central Peru: A Case Study of Smallholder Management across Farming Landscapes," Land, MDPI, vol. 8(11), pages 1-30, November.
    3. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    4. Elshikha, Diaa Eldin M. & Hunsaker, Douglas J. & Waller, Peter M. & Thorp, Kelly R. & Dierig, David & Wang, Guangyao & Cruz, Von Mark V. & Katterman, Matthew E. & Bronson, Kevin F. & Wall, Gerard W. &, 2022. "Estimation of direct-seeded guayule cover, crop coefficient, and yield using UAS-based multispectral and RGB data," Agricultural Water Management, Elsevier, vol. 265(C).
    5. Pradosh Kumar Parida & Eagan Somasundaram & Ramanujam Krishnan & Sengodan Radhamani & Uthandi Sivakumar & Ettiyagounder Parameswari & Rajagounder Raja & Silambiah Ramasamy Shri Rangasami & Sundapalaya, 2024. "Unmanned Aerial Vehicle-Measured Multispectral Vegetation Indices for Predicting LAI, SPAD Chlorophyll, and Yield of Maize," Agriculture, MDPI, vol. 14(7), pages 1-20, July.
    6. Yalin Guo & Lina Zhang & Zhenlong Li & Yakai He & Chengxu Lv & Yongnan Chen & Huangzhen Lv & Zhilong Du, 2024. "Online Detection of Dry Matter in Potatoes Based on Visible Near-Infrared Transmission Spectroscopy Combined with 1D-CNN," Agriculture, MDPI, vol. 14(5), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan Wang & L. Jeff Hong, 2023. "Large-Scale Inventory Optimization: A Recurrent Neural Networks–Inspired Simulation Approach," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 196-215, January.
    2. Léon Faure & Bastien Mollet & Wolfram Liebermeister & Jean-Loup Faulon, 2023. "A neural-mechanistic hybrid approach improving the predictive power of genome-scale metabolic models," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    4. Furqan Dar & Samuel R. Cohen & Diana M. Mitrea & Aaron H. Phillips & Gergely Nagy & Wellington C. Leite & Christopher B. Stanley & Jeong-Mo Choi & Richard W. Kriwacki & Rohit V. Pappu, 2024. "Biomolecular condensates form spatially inhomogeneous network fluids," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Nina Tiel & Fabian Fopp & Philipp Brun & Johan Hoogen & Dirk Nikolaus Karger & Cecilia M. Casadei & Lisha Lyu & Devis Tuia & Niklaus E. Zimmermann & Thomas W. Crowther & Loïc Pellissier, 2024. "Regional uniqueness of tree species composition and response to forest loss and climate change," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. López Pérez, Mario & Mansilla Corona, Ricardo, 2022. "Ordinal synchronization and typical states in high-frequency digital markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    7. Jessica M. Vanslambrouck & Sean B. Wilson & Ker Sin Tan & Ella Groenewegen & Rajeev Rudraraju & Jessica Neil & Kynan T. Lawlor & Sophia Mah & Michelle Scurr & Sara E. Howden & Kanta Subbarao & Melissa, 2022. "Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    8. Kiran Krishnamachari & Dylan Lu & Alexander Swift-Scott & Anuar Yeraliyev & Kayla Lee & Weitai Huang & Sim Ngak Leng & Anders Jacobsen Skanderup, 2022. "Accurate somatic variant detection using weakly supervised deep learning," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Larissa Samaan & Leonie Klock & Sandra Weber & Mirjam Reidick & Leonie Ascone & Simone Kühn, 2024. "Low-Level Visual Features of Window Views Contribute to Perceived Naturalness and Mental Health Outcomes," IJERPH, MDPI, vol. 21(5), pages 1-35, May.
    10. Dennis Bontempi & Leonard Nuernberg & Suraj Pai & Deepa Krishnaswamy & Vamsi Thiriveedhi & Ahmed Hosny & Raymond H. Mak & Keyvan Farahani & Ron Kikinis & Andrey Fedorov & Hugo J. W. L. Aerts, 2024. "End-to-end reproducible AI pipelines in radiology using the cloud," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Matthew Rosenblatt & Link Tejavibulya & Rongtao Jiang & Stephanie Noble & Dustin Scheinost, 2024. "Data leakage inflates prediction performance in connectome-based machine learning models," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Jackie Grant & Mark Hindmarsh & Sergey E. Koposov, 2022. "The distribution of loss to future USS pensions due to the UUK cuts of April 2022," Papers 2206.06201, arXiv.org.
    15. Sayedali Shetab Boushehri & Katharina Essig & Nikolaos-Kosmas Chlis & Sylvia Herter & Marina Bacac & Fabian J. Theis & Elke Glasmacher & Carsten Marr & Fabian Schmich, 2023. "Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Henry Webel & Lili Niu & Annelaura Bach Nielsen & Marie Locard-Paulet & Matthias Mann & Lars Juhl Jensen & Simon Rasmussen, 2024. "Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Shukla, Mohak & Thakur, Ajay D., 2022. "An Enquiry on similarities between Renormalization Group and Auto-Encoders using Transfer Learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    18. Borofsky, Talia & Feldman, Marcus W. & Ram, Yoav, 2024. "Cultural transmission, competition for prey, and the evolution of cooperative hunting," Theoretical Population Biology, Elsevier, vol. 156(C), pages 12-21.
    19. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    20. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:11:p:1876-:d:1505269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.