Improvement of Hot Air Dried Bitter Gourd ( Momordica charantia L.) Product Quality: Optimization of Drying and Blanching Process by Experimental Design
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hasmet Emre Akman & Ismail Boyar & Sadiye Gozlekci & Onur Saracoglu & Can Ertekin, 2022. "Effects of Convective Drying of Quince Fruit ( Cydonia oblonga ) on Color, Antioxidant Activity and Phenolic Compounds under Various Fruit Juice Dipping Pre-Treatments," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
- Chauhan, Prashant Singh & Kumar, Anil & Nuntadusit, Chayut & Banout, Jan, 2018. "Thermal modeling and drying kinetics of bitter gourd flakes drying in modified greenhouse dryer," Renewable Energy, Elsevier, vol. 118(C), pages 799-813.
- Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mengqing Li & Mengyao Li & Xuetao Zhang & Qian Zhang & Xuhai Yang, 2024. "Effect of Infrared-Combined Hot Air Intermittent Drying of Jujube ( Zizyphus jujuba Miller ) Slices: Drying Characteristics, Quality, and Energy Consumption Dimensions," Agriculture, MDPI, vol. 14(2), pages 1-15, January.
- Anna Sadowska & Katarzyna Najman & Franciszek Świderski, 2024. "Research Progress of the Functional Properties of Fruit and Vegetables and Their Preserves," Agriculture, MDPI, vol. 14(5), pages 1-3, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
- Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Katarzyna Najman & Sylwia Adrian & Ewelina Hallmann & Anna Sadowska & Krzysztof Buczak & Bożena Waszkiewicz-Robak & Arkadiusz Szterk, 2023. "Effect of Various Drying Methods on Physicochemical and Bioactive Properties of Quince Fruit ( Cydonia oblonga Mill.)," Agriculture, MDPI, vol. 13(2), pages 1-20, February.
- Das, Mehmet & Akpinar, Ebru Kavak, 2021. "Investigation of the effects of solar tracking system on performance of the solar air dryer," Renewable Energy, Elsevier, vol. 167(C), pages 907-916.
- Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
- Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
- Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
- Houssam Chouikhi & Baher M. A. Amer, 2023. "Performance Evaluation of an Indirect-Mode Forced Convection Solar Dryer Equipped with a PV/T Air Collector for Drying Tomato Slices," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
- Ionuț Dumitru Veleșcu & Roxana Nicoleta Rațu & Vlad-Nicolae Arsenoaia & Radu Roșca & Petru Marian Cârlescu & Ioan Țenu, 2023. "Research on the Process of Convective Drying of Apples and Apricots Using an Original Drying Installation," Agriculture, MDPI, vol. 13(4), pages 1-32, March.
- Lehmad, Manal & Hidra, Nawfal & Lhomme, Patrick & Mghazli, Safa & EL Hachimi, Youssef & Abdenouri, Naji, 2024. "Environmental, economic and quality assessment of hybrid solar-electric drying of black soldier fly (Hermetia illucens) larvae," Renewable Energy, Elsevier, vol. 226(C).
- Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
- Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
- Gupta, Ankur & Das, Biplab & Biswas, Agnimitra & Mondol, Jayanta Deb, 2022. "Sustainability and 4E analysis of novel solar photovoltaic-thermal solar dryer under forced and natural convection drying," Renewable Energy, Elsevier, vol. 188(C), pages 1008-1021.
- Abubakar, S. & Umaru, S. & Kaisan, M.U. & Umar, U.A. & Ashok, B. & Nanthagopal, K., 2018. "Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage," Renewable Energy, Elsevier, vol. 128(PA), pages 285-298.
- Atalay, Halil & Cankurtaran, Eda, 2021. "Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium," Energy, Elsevier, vol. 216(C).
- Kumar, Lalan & Prakash, Om, 2024. "Efficient simulation of bitter gourd drying in active solar dryer: A state-of-the-art model," Renewable Energy, Elsevier, vol. 227(C).
- Tugce Ozsan Kilic & Ismail Boyar & Cuneyt Dincer & Can Ertekin & Ahmet Naci Onus, 2023. "Effects of Different Osmotic Pre-Treatments on the Drying Characteristics, Modeling and Physicochemical Properties of Momordica charantia L. Slices," Agriculture, MDPI, vol. 13(10), pages 1-21, September.
- Hamed Karami & Mohammad Kaveh & Iman Golpour & Esmail Khalife & Robert Rusinek & Bohdan Dobrzański & Marek Gancarz, 2021. "Thermodynamic Evaluation of the Forced Convective Hybrid-Solar Dryer during Drying Process of Rosemary ( Rosmarinus officinalis L.) Leaves," Energies, MDPI, vol. 14(18), pages 1-17, September.
More about this item
Keywords
bitter gourd; blanching; slice thickness; hot-air drying; antioxidant activity; total phenolic content; vitamin C; color change;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:9:p:1849-:d:1244683. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.