IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124004993.html
   My bibliography  Save this article

Efficient simulation of bitter gourd drying in active solar dryer: A state-of-the-art model

Author

Listed:
  • Kumar, Lalan
  • Prakash, Om

Abstract

Greenhouse drying system is used to dry agricultural products or low-temperature thermal drying using a greenhouse structure. In this paper, an experimental and simulation study is carried out to evaluate the drying performances of an active solar greenhouse dryer using COMSOL Multiphysics. The experimental setup includes a compact thermal storage-based greenhouse dryer (1.5 m × 1.0 m x 0.5 m) equipped with a black gravel-covered Aluminium jacket and 35 kg of paraffin wax for heat retention which is located on the floor of the dryer. The experiments were conducted in Ranchi, India (23.34 °N, 85.30 °E) under clear sky conditions in the month of May. The amount of solar radiation (global solar radiation) varied from (630 W/m2 to 1052 W/m2) with an average of 936 W/m2, ambient air temperature (30.2 °C–38.2 °C), air relative humidity (31.6 %–34.6 %), and wind speed (0.9–1.0 m/s). The inside dryer temperature, humidity, wind speed, and floor temperature were also measured every hour. The average values of these parameters were 59.1 °C, 30.2 %, 0.91 m/s, and 69.1 °C, respectively. The FE (finite element) modelling finds out the maximum temperature in drying products, floor and dryer's outlet is 55.3 °C,72.4 °C and 67.4 °C, respectively at 13:00 h. The proposed dryer costs 19633.50 INR with an embodied energy of 1358.01 kW h. The proposed dryer has a break-even period of 1.87 years, and its lifespan is 35 years. During this time, the net CO2 emission was found to be 21.45 tonnes, and the earned carbon credit varies from 1505.01 to 30030.00 INR. The result shows that the drying efficiency is 42.52 %, reducing the initial moisture content from 88.64 % to 2.28 % within five consecutive hours. The energy and exergy efficiencies of the dryer are found to be 61.84 % and 56 % respectively. The system is a viable, sustainable choice for the large-scale production of bitter gourd flakes.

Suggested Citation

  • Kumar, Lalan & Prakash, Om, 2024. "Efficient simulation of bitter gourd drying in active solar dryer: A state-of-the-art model," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124004993
    DOI: 10.1016/j.renene.2024.120434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vijayan, S. & Arjunan, T.V. & Kumar, Anil, 2020. "Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices," Renewable Energy, Elsevier, vol. 146(C), pages 2210-2223.
    2. Rani, Poonam & Tripathy, P.P., 2021. "Drying characteristics, energetic and exergetic investigation during mixed-mode solar drying of pineapple slices at varied air mass flow rates," Renewable Energy, Elsevier, vol. 167(C), pages 508-519.
    3. Lakshmi, D.V.N. & Muthukumar, P. & Nayak, Prakash Kumar, 2021. "Experimental investigations on active solar dryers integrated with thermal storage for drying of black pepper," Renewable Energy, Elsevier, vol. 167(C), pages 728-739.
    4. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Madhankumar, S. & Viswanathan, Karthickeyan & Wu, Wei, 2021. "Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material," Renewable Energy, Elsevier, vol. 176(C), pages 280-294.
    3. Atalay, Halil & Yavaş, Nur & Turhan Çoban, M., 2022. "Sustainability and performance analysis of a solar and wind energy assisted hybrid dryer," Renewable Energy, Elsevier, vol. 187(C), pages 1173-1183.
    4. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    5. Hadibi, Tarik & Mennouche, Djamel & Boubekri, Abdelghani & Chouicha, Samira & Arıcı, Müslüm & Yunfeng, Wang & Ming, Li & Fang-ling, Fan, 2023. "Drying characteristic, sustainability, and 4E (energy, exergy, and enviro-economic) analysis of dried date fruits using indirect solar-electric dryer: An experimental investigation," Renewable Energy, Elsevier, vol. 218(C).
    6. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    7. Mellalou, Abderrahman & Riad, Walid & Bacaoui, Abdelaziz & Outzourhit, Abdelkader, 2023. "Impact of the greenhouse drying modes of two-phase olive pomace on the energy, exergy, economic and environmental (4E) performance indicators," Renewable Energy, Elsevier, vol. 210(C), pages 229-250.
    8. Gilago, Mulatu C. & Chandramohan, V.P., 2022. "Performance evaluation of natural and forced convection indirect type solar dryers during drying ivy gourd: An experimental study," Renewable Energy, Elsevier, vol. 182(C), pages 934-945.
    9. Wang, Hui & Torki, Mehdi & Xiao, Hong-Wei & Orsat, Valérie & Raghavan, G.S.V. & Liu, Zi-Liang & Peng, Wen-Jun & Fang, Xiao-Ming, 2022. "Multi-objective analysis of evacuated tube solar-electric hybrid drying setup for drying lotus bee pollen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Akoko, Peter Obuon & Gathungu, Edith & De Groote, Hugo, 2024. "Evaluating Smallholder Farmers’ Willingness to Pay for Improved Maize Dryers in Njoro Sub-County, Nakuru, Kenya," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344279, International Association of Agricultural Economists (IAAE).
    11. Evan Eduard Susanto & Agus Saptoro & Perumal Kumar & Angnes Ngieng Tze Tiong & Aditya Putranto & Suherman Suherman, 2024. "7E + Q analysis: a new multi-dimensional assessment tool of solar dryer for food and agricultural products," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 16363-16385, July.
    12. Singh, Sukhmeet & Gill, R.S. & Hans, V.S. & Mittal, T.C., 2022. "Experimental performance and economic viability of evacuated tube solar collector assisted greenhouse dryer for sustainable development," Energy, Elsevier, vol. 241(C).
    13. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    14. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    16. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    17. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    18. Das, Mehmet & Akpinar, Ebru Kavak, 2021. "Investigation of the effects of solar tracking system on performance of the solar air dryer," Renewable Energy, Elsevier, vol. 167(C), pages 907-916.
    19. Cristiana Croitoru & Florin Bode & Răzvan Calotă & Charles Berville & Matei Georgescu, 2024. "Harnessing Nanomaterials for Enhanced Energy Efficiency in Transpired Solar Collectors: A Review of Their Integration in Phase-Change Materials," Energies, MDPI, vol. 17(5), pages 1-18, March.
    20. Houssam Chouikhi & Baher M. A. Amer, 2023. "Performance Evaluation of an Indirect-Mode Forced Convection Solar Dryer Equipped with a PV/T Air Collector for Drying Tomato Slices," Sustainability, MDPI, vol. 15(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124004993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.