IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp1192-1203.html
   My bibliography  Save this article

Microbial pretreatment using Kosakonia oryziphila IH3 to enhance biogas production and hydrocarbon depletion from petroleum refinery sludge

Author

Listed:
  • Paul Choudhury, Shinjini
  • Panda, Sugato
  • Haq, Izharul
  • Kalamdhad, Ajay S.

Abstract

Petroleum refinery sludge (PRS) from the biological treatment unit was assessed for the extent of anaerobic biodegradability and pollutant removal through microbial pretreatment utilizing a novel lignin peroxidase (LiP) enzyme-producing bacterial strain, Kosakonia oryziphila to optimize the accelerated solubilization of PRS. K. oryziphila was incubated at different dosages (107, 108 and 109 CFU/mL) for 6 d resulting in maximum soluble chemical oxygen demand (3-fold increment) and volatile fatty acids concentration (2.53-fold increment) against untreated for dosage 108 CFU/mL on 4th d. The maximum LiP activity (20.52 IU/mL) was obtained at optimum conditions. The interactive effect of pretreated substrate and inoculum (S/I) ratios and pH on accumulated biogas yield was optimized using central composite design-response surface methodology in 1 L batch assay. This resulted in significant interaction of independent variables to obtain an optimal condition (S/I = 2.69 and pH = 7.38) for maximum biogas (5.15 L/g VSadded) with 1.56-fold increment against untreated PRS. During process scale-up (20 L study), total petroleum hydrocarbon, oil and grease, and total phenol removals were 56.2%, 62.5% and 88.4% respectively within 50 d of digestion. The digestate phytotoxicity assay revealed a significant reduction in seed-germination inhibition with an increase in seedling and biomass growth suggesting improved decontamination during the digestion process.

Suggested Citation

  • Paul Choudhury, Shinjini & Panda, Sugato & Haq, Izharul & Kalamdhad, Ajay S., 2022. "Microbial pretreatment using Kosakonia oryziphila IH3 to enhance biogas production and hydrocarbon depletion from petroleum refinery sludge," Renewable Energy, Elsevier, vol. 194(C), pages 1192-1203.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1192-1203
    DOI: 10.1016/j.renene.2022.05.167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olatunji, Kehinde O. & Ahmed, Noor A. & Madyira, Daniel M. & Adebayo, Ademola O. & Ogunkunle, Oyetola & Adeleke, Oluwatobi, 2022. "Performance evaluation of ANFIS and RSM modeling in predicting biogas and methane yields from Arachis hypogea shells pretreated with size reduction," Renewable Energy, Elsevier, vol. 189(C), pages 288-303.
    2. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    3. Mirmohamadsadeghi, Safoora & Karimi, Keikhosro & Azarbaijani, Reza & Parsa Yeganeh, Laleh & Angelidaki, Irini & Nizami, Abdul-Sattar & Bhat, Rajeev & Dashora, Kavya & Vijay, Virendra Kumar & Aghbashlo, 2021. "Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsigkou, Konstantina & Sventzouri, Eirini & Zafiri, Constantina & Kornaros, Michael, 2023. "Digestate recirculation rate optimization for the enhancement of hydrogen production: The case of disposable nappies and fruit/vegetable waste valorization in a mesophilic two-stage anaerobic digestio," Renewable Energy, Elsevier, vol. 215(C).
    2. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    5. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Magdalena Zdeb & Marta Bis & Artur Przywara, 2023. "Multi-Criteria Analysis of the Influence of Lignocellulosic Biomass Pretreatment Techniques on Methane Production," Energies, MDPI, vol. 16(1), pages 1-14, January.
    8. Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2023. "Application of nested artificial neural network for the prediction of significant wave height," Renewable Energy, Elsevier, vol. 209(C), pages 157-168.
    9. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    10. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Nwosu, Ugochukwu & Wang, Aiguo & Palma, Bruna & Zhao, Heng & Khan, Mohd Adnan & Kibria, Md & Hu, Jinguang, 2021. "Selective biomass photoreforming for valuable chemicals and fuels: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Mahmoodi-Eshkaftaki, Mahmood & Mahbod, Mehdi & Ghenaatian, Hamid Reza, 2024. "Non-destructive estimation of biomass characteristics: Combining hyperspectral imaging data with neural networks," Renewable Energy, Elsevier, vol. 224(C).
    13. Dawid Szwarc & Katarzyna Głowacka, 2021. "Increasing the Biogas Potential of Rapeseed Straw Using Pulsed Electric Field Pre-Treatment," Energies, MDPI, vol. 14(24), pages 1-11, December.
    14. Akinola David Olugbemide & Ana Oberlintner & Uroš Novak & Blaž Likozar, 2021. "Lignocellulosic Corn Stover Biomass Pre-Treatment by Deep Eutectic Solvents (DES) for Biomethane Production Process by Bioresource Anaerobic Digestion," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    15. Ebrahimian, Elham & Denayer, Joeri F.M. & Aghbashlo, Mortaza & Tabatabaei, Meisam & Karimi, Keikhosro, 2022. "Biomethane and biodiesel production from sunflower crop: A biorefinery perspective," Renewable Energy, Elsevier, vol. 200(C), pages 1352-1361.
    16. Pengcheng Liu & Yunxia Pan, 2023. "The Improvement of Rice Straw Anaerobic Co-Digestion with Swine Wastewater by Solar/Fe(II)/PS Pretreatment," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    17. Gao, Zhenghui & Alshehri, Khaled & Li, Yuan & Qian, Hang & Sapsford, Devin & Cleall, Peter & Harbottle, Michael, 2022. "Advances in biological techniques for sustainable lignocellulosic waste utilization in biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    19. Binhweel, Fozy & Pyar, Hassan & Senusi, Wardah & Shaah, Marwan Abdulhakim & Hossain, Md Sohrab & Ahmad, Mardiana Idayu, 2023. "Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: Kinetics, thermodynamics, and optimization studies," Renewable Energy, Elsevier, vol. 205(C), pages 717-730.
    20. Yanli Fu & Jie Zhang & Tianzhu Guan, 2023. "High-Value Utilization of Corn Straw: From Waste to Wealth," Sustainability, MDPI, vol. 15(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1192-1203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.