Venturi-type injection system as a potential H2 mass transfer technology for full-scale in situ biomethanation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2018.04.034
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
- Vo, Truc T.Q. & Wall, David M. & Ring, Denis & Rajendran, Karthik & Murphy, Jerry D., 2018. "Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation," Applied Energy, Elsevier, vol. 212(C), pages 1191-1202.
- Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
- Burkhardt, Marko & Busch, Günter, 2013. "Methanation of hydrogen and carbon dioxide," Applied Energy, Elsevier, vol. 111(C), pages 74-79.
- Rachbauer, Lydia & Voitl, Gregor & Bochmann, Günther & Fuchs, Werner, 2016. "Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor," Applied Energy, Elsevier, vol. 180(C), pages 483-490.
- Sun, Qie & Li, Hailong & Yan, Jinying & Liu, Longcheng & Yu, Zhixin & Yu, Xinhai, 2015. "Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 521-532.
- Van Dael, Miet & Kreps, Sabine & Virag, Ana & Kessels, Kris & Remans, Koen & Thomas, Denis & De Wilde, Fabian, 2018. "Techno-economic assessment of a microbial power-to-gas plant – Case study in Belgium," Applied Energy, Elsevier, vol. 215(C), pages 416-425.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
- Shiplu Sarker & Sander N. Wijnsma & Kristian M. Lien, 2020. "Lessons Learned from an Experimental Campaign on Promoting Energy Content of Renewable Biogas by Injecting H 2 during Anaerobic Digestion," Energies, MDPI, vol. 13(14), pages 1-10, July.
- Park, Jun-Gyu & Kwon, Hye-Jeong & Cheon, A-In & Jun, Hang-Bae, 2021. "Jet-nozzle based improvement of dissolved H2 concentration for efficient in-situ biogas upgrading in an up-flow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 168(C), pages 270-279.
- Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
- Jensen, M.B. & Ottosen, L.D.M. & Kofoed, M.V.W., 2021. "H2 gas-liquid mass transfer: A key element in biological Power-to-Gas methanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Ali Dabestani-Rahmatabad & Gabriel Capson-Tojo & Eric Trably & Jean-Philippe Delgenès & Renaud Escudié, 2024. "Assessing the Impact of Organic Loading Rate on Hydrogen Consumption Rates during In Situ Biomethanation," Energies, MDPI, vol. 17(11), pages 1-20, May.
- Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Raquel Iglesias & Raúl Muñoz & María Polanco & Israel Díaz & Ana Susmozas & Antonio D. Moreno & María Guirado & Nely Carreras & Mercedes Ballesteros, 2021. "Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development," Energies, MDPI, vol. 14(10), pages 1-30, May.
- Díaz, Israel & Fdz-Polanco, Fernando & Mutsvene, Boldwin & Fdz-Polanco, María, 2020. "Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge," Applied Energy, Elsevier, vol. 280(C).
- Ruggero Bellini & Ilaria Bassani & Arianna Vizzarro & Annalisa Abdel Azim & Nicolò Santi Vasile & Candido Fabrizio Pirri & Francesca Verga & Barbara Menin, 2022. "Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO 2," Energies, MDPI, vol. 15(11), pages 1-34, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
- Kirchbacher, F. & Miltner, M. & Wukovits, W. & Harasek, M., 2019. "Economic assessment of membrane-based power-to-gas processes for the European biogas market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 338-352.
- Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
- Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
- Van Dael, Miet & Kreps, Sabine & Virag, Ana & Kessels, Kris & Remans, Koen & Thomas, Denis & De Wilde, Fabian, 2018. "Techno-economic assessment of a microbial power-to-gas plant – Case study in Belgium," Applied Energy, Elsevier, vol. 215(C), pages 416-425.
- Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
- Witte, Julia & Calbry-Muzyka, Adelaide & Wieseler, Tanja & Hottinger, Peter & Biollaz, Serge M.A. & Schildhauer, Tilman J., 2019. "Demonstrating direct methanation of real biogas in a fluidised bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 359-371.
- Andreas Lemmer & Timo Ullrich, 2018. "Effect of Different Operating Temperatures on the Biological Hydrogen Methanation in Trickle Bed Reactors," Energies, MDPI, vol. 11(6), pages 1-11, May.
- Neubert, Michael & Hauser, Alexander & Pourhossein, Babak & Dillig, Marius & Karl, Juergen, 2018. "Experimental evaluation of a heat pipe cooled structured reactor as part of a two-stage catalytic methanation process in power-to-gas applications," Applied Energy, Elsevier, vol. 229(C), pages 289-298.
- Burkhardt, Marko & Jordan, Isabel & Heinrich, Sabrina & Behrens, Johannes & Ziesche, André & Busch, Günter, 2019. "Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 818-826.
- Néméhie Lawson & Merlin Alvarado-Morales & Panagiotis Tsapekos & Irini Angelidaki, 2021. "Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants," Energies, MDPI, vol. 14(24), pages 1-18, December.
- Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Giuseppe Lembo & Silvia Rosa & Antonella Marone & Antonella Signorini, 2023. "In Situ Biogas Upgrading in a Randomly Packed Gas-Stirred Tank Reactor (GSTR)," Energies, MDPI, vol. 16(7), pages 1-17, April.
- McDonagh, Shane & O'Shea, Richard & Wall, David M. & Deane, J.P. & Murphy, Jerry D., 2018. "Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel," Applied Energy, Elsevier, vol. 215(C), pages 444-456.
- Rajendran, Karthik & Browne, James D. & Murphy, Jerry D., 2019. "What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?," Renewable Energy, Elsevier, vol. 133(C), pages 951-963.
- Fagbohungbe, Michael O. & Komolafe, Abiodun O. & Okere, Uchechukwu V., 2019. "Renewable hydrogen anaerobic fermentation technology: Problems and potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Rittmann, Simon K.-M.R. & Seifert, Arne H. & Bernacchi, Sébastien, 2018. "Kinetics, multivariate statistical modelling, and physiology of CO2-based biological methane production," Applied Energy, Elsevier, vol. 216(C), pages 751-760.
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
More about this item
Keywords
In situ biogas upgrading; Energy storage; H2; Full-scale biomethanation; Gas-liquid mass transfer; Anaerobic digestion;All these keywords.
JEL classification:
- H2 - Public Economics - - Taxation, Subsidies, and Revenue
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:222:y:2018:i:c:p:840-846. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.