IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6618-d655611.html
   My bibliography  Save this article

Energetic Potential for Biological Methanation in Anaerobic Sewage Sludge Digesters in Austria

Author

Listed:
  • Joseph Tauber

    (Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/2261, 1040 Vienna, Austria)

  • Andreas Ramsbacher

    (Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/2261, 1040 Vienna, Austria)

  • Karl Svardal

    (Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/2261, 1040 Vienna, Austria)

  • Jörg Krampe

    (Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/2261, 1040 Vienna, Austria)

Abstract

Biological methanation as a method of sector coupling between electric and gas grids is expected to be an integral part of the green energy change. Wastewater treatment plants (WWTPs) involving anaerobic digestion (AD) allow existing infrastructure to operate as energy conversion plants, to close carbon cycles and to generate long-term storable energy in the form of biomethane. Therefore, municipal raw sludge and additional organic residuals (co-substrates) are converted into biogas. Hydrogen is added to convert the carbon dioxide in the biogas into methane via biological methanation (BM). In this study, the energy amount that is convertible via BM in municipal digesters in Austria was calculated. The amount of energy, which can be transformed from electric surplus energy into biomethane, was assessed. Operational data from lab-scale digesters were combined with data from 28 Austrian full-scale wastewater treatment plants with AD. They represent 9.2 Mio population equivalents (PE), or 68% of Austria’s municipal AD capacity for WWTPs > 50,000 PE (in sum, 13.6 Mio PE). Energy flows for BM including water electrolysis and anaerobic digestion were created on a countrywide basis. It was found that 2.9–4.4% (220–327 GWh·y −1 ) of Austria’s yearly renewable electricity production (7470 GWh·y −1 ) can be transformed into biomethane via BM in municipal digesters.

Suggested Citation

  • Joseph Tauber & Andreas Ramsbacher & Karl Svardal & Jörg Krampe, 2021. "Energetic Potential for Biological Methanation in Anaerobic Sewage Sludge Digesters in Austria," Energies, MDPI, vol. 14(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6618-:d:655611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6618/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6618/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Schäfer & Oliver Gretzschel & Heidrun Steinmetz, 2020. "The Possible Roles of Wastewater Treatment Plants in Sector Coupling," Energies, MDPI, vol. 13(8), pages 1-20, April.
    2. Burkhardt, Marko & Busch, Günter, 2013. "Methanation of hydrogen and carbon dioxide," Applied Energy, Elsevier, vol. 111(C), pages 74-79.
    3. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    4. Peng Fu & Danny Pudjianto & Xi Zhang & Goran Strbac, 2020. "Integration of Hydrogen into Multi-Energy Systems Optimisation," Energies, MDPI, vol. 13(7), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raquel Barrena & Javier Moral-Vico & Xavier Font & Antoni Sánchez, 2022. "Enhancement of Anaerobic Digestion with Nanomaterials: A Mini Review," Energies, MDPI, vol. 15(14), pages 1-11, July.
    2. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    3. Panupon Trairat & Sakda Somkun & Tanakorn Kaewchum & Tawat Suriwong & Pisit Maneechot & Teerapon Panpho & Wikarn Wansungnern & Sathit Banthuek & Bongkot Prasit & Tanongkiat Kiatsiriroat, 2023. "Grid Integration of Livestock Biogas Using Self-Excited Induction Generator and Spark-Ignition Engine," Energies, MDPI, vol. 16(13), pages 1-23, June.
    4. Muhammad Irfan & Sharjeel Waqas & Javed Akbar Khan & Saifur Rahman & Izabela Kruszelnicka & Dobrochna Ginter-Kramarczyk & Stanislaw Legutko & Marek Ochowiak & Sylwia Włodarczak & Krystian Czernek, 2022. "Effect of Operating Parameters and Energy Expenditure on the Biological Performance of Rotating Biological Contactor for Wastewater Treatment," Energies, MDPI, vol. 15(10), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    2. Oliver Gretzschel & Michael Schäfer & Heidrun Steinmetz & Erich Pick & Kim Kanitz & Stefan Krieger, 2020. "Advanced Wastewater Treatment to Eliminate Organic Micropollutants in Wastewater Treatment Plants in Combination with Energy-Efficient Electrolysis at WWTP Mainz," Energies, MDPI, vol. 13(14), pages 1-28, July.
    3. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    4. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    5. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    6. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Will implementation of green gas into the gas supply be feasible in the future?," Applied Energy, Elsevier, vol. 140(C), pages 409-417.
    8. Henrik Nordström & Lennart Söder & Damian Flynn & Julia Matevosyan & Juha Kiviluoma & Hannele Holttinen & Til Kristian Vrana & Adriaan van der Welle & Germán Morales-España & Danny Pudjianto & Goran S, 2023. "Strategies for Continuous Balancing in Future Power Systems with High Wind and Solar Shares," Energies, MDPI, vol. 16(14), pages 1-43, July.
    9. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    10. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    11. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    12. Yi, Qun & Wu, Guo-sheng & Gong, Min-hui & Huang, Yi & Feng, Jie & Hao, Yan-hong & Li, Wen-ying, 2017. "A feasibility study for CO2 recycle assistance with coke oven gas to synthetic natural gas," Applied Energy, Elsevier, vol. 193(C), pages 149-161.
    13. David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.
    14. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    15. Navarro, J.C. & Baena-Moreno, F.M. & Centeno, M.A. & Laguna, O.H. & Almagro, J.F. & Odriozola, J.A., 2023. "Process design and utilisation strategy for CO2 capture in flue gases. Technical assessment and preliminary economic approach for steel mills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Lena Maria Ringsgwandl & Johannes Schaffert & Nils Brücken & Rolf Albus & Klaus Görner, 2022. "Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany," Energies, MDPI, vol. 15(5), pages 1-16, February.
    17. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    18. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    19. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6618-:d:655611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.