IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i4p833-d1117436.html
   My bibliography  Save this article

Single-Pass Grain Corn Harvest and Stubble Shredding: Performance of Three Corn Header Configurations as Effected by Harvesting Speed and Cutting Height

Author

Listed:
  • Sebastian Ramm

    (Institute of Agricultural Engineering, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
    Department of Agricultural Engineering, Kiel University of Applied Sciences, 24783 Osterrönfeld, Germany)

  • Mario Hasler

    (Lehrfach Variationsstatistik, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany)

  • Yves Reckleben

    (Department of Agricultural Engineering, Kiel University of Applied Sciences, 24783 Osterrönfeld, Germany)

  • Eberhard Hartung

    (Institute of Agricultural Engineering, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany)

Abstract

This study aims to evaluate the efficiency of a new type of corn header equipped with flail knives that shreds corn stubble close to the ground. A field trial was carried out to quantify the influence of the shredding tool design (flail knives, standard knives, horizontal choppers disengaged), harvesting speed (1.5, 3.0, 4.5, 6.0 km/h) and cutting height (approx. 20 cm variation, 4 levels) on the power consumption of the corn header, engine load and fuel consumption of the combine harvester. The regression analyses revealed that modifications of the shredding tool assembly have significant effects on the parameters of the functional relationships. The power consumption of the flail knives configuration was 15 kW/row unit at 6 km/h at the lowest cutting height setting, making it compatible with most current combine harvester models. The additional power demand and fuel consumption that arise when switching to the new shredding tool design (flail knives) show a wide range, depending on the initial situation. Compared to the standard knives at 6 km/h, the additional power consumption was 3.6–5.5 kW/row unit and the additional fuel consumption was 2.6–3.9 L/ha. Compared to the configuration with disengaged horizontal choppers, it was 5.3–6.6 kW/row unit and 3.9–5.1 L/ha, respectively. At 90% engine load the additional power requirement was 1.6–3.1 kW/row unit and the additional fuel consumption was 2.9–5.6 L/ha compared to the standard knives configuration and 2.6–3.6 kW/row unit and 5.6–7.2 L/ha respectively, compared to the configuration with disengaged horizontal choppers.

Suggested Citation

  • Sebastian Ramm & Mario Hasler & Yves Reckleben & Eberhard Hartung, 2023. "Single-Pass Grain Corn Harvest and Stubble Shredding: Performance of Three Corn Header Configurations as Effected by Harvesting Speed and Cutting Height," Agriculture, MDPI, vol. 13(4), pages 1-24, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:833-:d:1117436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/4/833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/4/833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trnka, M. & Muška, F. & Semerádová, D. & Dubrovský, M. & Kocmánková, E. & Žalud, Z., 2007. "European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate," Ecological Modelling, Elsevier, vol. 207(2), pages 61-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Ramm & Hans Heinrich Voßhenrich & Mario Hasler & Yves Reckleben & Eberhard Hartung, 2024. "Comparative Analysis of Mechanical In-Field Corn Residue Shredding Methods: Evaluating Particle Size Distribution and Rating of Structural Integrity of Corn Stalk Segments," Agriculture, MDPI, vol. 14(2), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Marková & D. Janouš & M. Pavelka & J. Macků & K. Havránková & K. Rejšek & M.V. Marek, 2016. "Potential changes in Czech forest soil carbon stocks under different climate change scenarios," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(12), pages 537-544.
    2. Sebastian Ramm & Hans Heinrich Voßhenrich & Mario Hasler & Yves Reckleben & Eberhard Hartung, 2024. "Comparative Analysis of Mechanical In-Field Corn Residue Shredding Methods: Evaluating Particle Size Distribution and Rating of Structural Integrity of Corn Stalk Segments," Agriculture, MDPI, vol. 14(2), pages 1-24, February.
    3. Zdeněk Žalud & Miroslav Trnka & Martin Dubrovský & Petr Hlavinka & Daniela Semerádová & Eva Kocmánková, 2009. "Climate change impacts on selected aspects of the Czech agricultural production," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 45(SpecialIs), pages 11-19.
    4. Matty Demont & Marie Cerovska & Wim Daems & Koen Dillen & József Fogarasi & Erik Mathijs & František Muška & Josef Soukup & Eric Tollens, 2008. "Ex Ante Impact Assessment under Imperfect Information: Biotechnology in New Member States of the EU," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(3), pages 463-486, September.
    5. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    6. Machovina, Brian & Feeley, Kenneth J., 2013. "Climate change driven shifts in the extent and location of areas suitable for export banana production," Ecological Economics, Elsevier, vol. 95(C), pages 83-95.
    7. Vasileiadis, V.P. & Sattin, M. & Otto, S. & Veres, A. & Pálinkás, Z. & Ban, R. & Pons, X. & Kudsk, P. & van der Weide, R. & Czembor, E. & Moonen, A.C. & Kiss, J., 2011. "Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management," Agricultural Systems, Elsevier, vol. 104(7), pages 533-540, September.
    8. Carrasco, L.R. & Mumford, J.D. & MacLeod, A. & Harwood, T. & Grabenweger, G. & Leach, A.W. & Knight, J.D. & Baker, R.H.A., 2010. "Unveiling human-assisted dispersal mechanisms in invasive alien insects: Integration of spatial stochastic simulation and phenology models," Ecological Modelling, Elsevier, vol. 221(17), pages 2068-2075.
    9. Miroslav Trnka & Josef Eitzinger & Daniela Semerádová & Petr Hlavinka & Jan Balek & Martin Dubrovský & Gerhard Kubu & Petr Štěpánek & Sabina Thaler & Martin Možný & Zdeněk Žalud, 2011. "Expected changes in agroclimatic conditions in Central Europe," Climatic Change, Springer, vol. 108(1), pages 261-289, September.
    10. Eva KOCMÁNKOVÁ & Miroslav TRNKA & Zdeněk ŽALUD & Daniela SEMERÁDOVÁ & Martin DUBROVSKÝ & František MUŠKA & Martin MOŽNÝ, 2008. "Comparison of two mapping methods of potential distribution of pests under present and changed climate," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 44(2), pages 49-56.
    11. Maiorano, Andrea & Bregaglio, Simone & Donatelli, Marcello & Fumagalli, Davide & Zucchini, Antonio, 2012. "Comparison of modelling approaches to simulate the phenology of the European corn borer under future climate scenarios," Ecological Modelling, Elsevier, vol. 245(C), pages 65-74.
    12. T. Hlásny & L. Zajíčková & M. Turčáni & J. Holuša & Z. Sitková, 2011. "Geographical variability of sprucebark beetle development under climate change in the Czech Republic," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(6), pages 242-249.
    13. Aurambout, J.P. & Finlay, K.J. & Luck, J. & Beattie, G.A.C., 2009. "A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—A means for assessing biosecurity risk," Ecological Modelling, Elsevier, vol. 220(19), pages 2512-2524.
    14. Amiri, Seyedreza & Eyni-Nargeseh, Hamed & Rahimi-Moghaddam, Sajjad & Azizi, Khosro, 2021. "Water use efficiency of chickpea agro-ecosystems will be boosted by positive effects of CO2 and using suitable genotype × environment × management under climate change conditions," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:4:p:833-:d:1117436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.