IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v57y2011i6id104-2010-jfs.html
   My bibliography  Save this article

Geographical variability of sprucebark beetle development under climate change in the Czech Republic

Author

Listed:
  • T. Hlásny

    (National Forest Centre - Forest Research Institute Zvolen, Zvolen, Slovakia
    Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • L. Zajíčková

    (Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • M. Turčáni

    (Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic)

  • J. Holuša

    (Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
    Forestry and Game Management Research Institute, Jíloviště-Strnady, Czech Republic)

  • Z. Sitková

    (National Forest Centre - Forest Research Institute Zvolen, Zvolen, Slovakia)

Abstract

Climate change is expected to influence the distribution and population dynamics of many insect pests, with potential severe impacts on forests. Spruce bark beetle Ips typographus (L.) (Col.: Curculionidae, Scolytinae) is the most important forest insect pest in Europe whose development is strictly regulated by air temperature. Therefore, climate change is anticipated to induce changes in the pest's distribution and development. We used the PHENIPS model to evaluate climate change impacts on the distribution and voltinism of spruce bark beetle in the Czech Republic. Two future time periods - 2025-2050 (near future) and 2075-2100 (distant future) - are addressed. The period 1961-1990 is used as the reference. We found that while a two-generation regime dominated in the Czech Republic in the reference period, significant three-generation regime regions are projected to appear in the near future. In the distant future, the three-generation regime can be expected to occur over all existing coniferous stands in the Czech Republic. The analysis of altitudinal shift of n-generation regime regions indicates noticeable expansion of Ips typographus development to higher elevations, leading for example to disappearance of one-generation regime regions in the distant future. Uncertainties and limitations of the presented findings are discussed as well.

Suggested Citation

  • T. Hlásny & L. Zajíčková & M. Turčáni & J. Holuša & Z. Sitková, 2011. "Geographical variability of sprucebark beetle development under climate change in the Czech Republic," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 57(6), pages 242-249.
  • Handle: RePEc:caa:jnljfs:v:57:y:2011:i:6:id:104-2010-jfs
    DOI: 10.17221/104/2010-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/104/2010-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/104/2010-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/104/2010-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trnka, M. & Muška, F. & Semerádová, D. & Dubrovský, M. & Kocmánková, E. & Žalud, Z., 2007. "European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate," Ecological Modelling, Elsevier, vol. 207(2), pages 61-84.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. I. Marková & D. Janouš & M. Pavelka & J. Macků & K. Havránková & K. Rejšek & M.V. Marek, 2016. "Potential changes in Czech forest soil carbon stocks under different climate change scenarios," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(12), pages 537-544.
    2. Matty Demont & Marie Cerovska & Wim Daems & Koen Dillen & József Fogarasi & Erik Mathijs & František Muška & Josef Soukup & Eric Tollens, 2008. "Ex Ante Impact Assessment under Imperfect Information: Biotechnology in New Member States of the EU," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(3), pages 463-486, September.
    3. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    4. Machovina, Brian & Feeley, Kenneth J., 2013. "Climate change driven shifts in the extent and location of areas suitable for export banana production," Ecological Economics, Elsevier, vol. 95(C), pages 83-95.
    5. Vasileiadis, V.P. & Sattin, M. & Otto, S. & Veres, A. & Pálinkás, Z. & Ban, R. & Pons, X. & Kudsk, P. & van der Weide, R. & Czembor, E. & Moonen, A.C. & Kiss, J., 2011. "Crop protection in European maize-based cropping systems: Current practices and recommendations for innovative Integrated Pest Management," Agricultural Systems, Elsevier, vol. 104(7), pages 533-540, September.
    6. Miroslav Trnka & Josef Eitzinger & Daniela Semerádová & Petr Hlavinka & Jan Balek & Martin Dubrovský & Gerhard Kubu & Petr Štěpánek & Sabina Thaler & Martin Možný & Zdeněk Žalud, 2011. "Expected changes in agroclimatic conditions in Central Europe," Climatic Change, Springer, vol. 108(1), pages 261-289, September.
    7. Maiorano, Andrea & Bregaglio, Simone & Donatelli, Marcello & Fumagalli, Davide & Zucchini, Antonio, 2012. "Comparison of modelling approaches to simulate the phenology of the European corn borer under future climate scenarios," Ecological Modelling, Elsevier, vol. 245(C), pages 65-74.
    8. Sebastian Ramm & Hans Heinrich Voßhenrich & Mario Hasler & Yves Reckleben & Eberhard Hartung, 2024. "Comparative Analysis of Mechanical In-Field Corn Residue Shredding Methods: Evaluating Particle Size Distribution and Rating of Structural Integrity of Corn Stalk Segments," Agriculture, MDPI, vol. 14(2), pages 1-24, February.
    9. Zdeněk Žalud & Miroslav Trnka & Martin Dubrovský & Petr Hlavinka & Daniela Semerádová & Eva Kocmánková, 2009. "Climate change impacts on selected aspects of the Czech agricultural production," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 45(SpecialIs), pages 11-19.
    10. Carrasco, L.R. & Mumford, J.D. & MacLeod, A. & Harwood, T. & Grabenweger, G. & Leach, A.W. & Knight, J.D. & Baker, R.H.A., 2010. "Unveiling human-assisted dispersal mechanisms in invasive alien insects: Integration of spatial stochastic simulation and phenology models," Ecological Modelling, Elsevier, vol. 221(17), pages 2068-2075.
    11. Sebastian Ramm & Mario Hasler & Yves Reckleben & Eberhard Hartung, 2023. "Single-Pass Grain Corn Harvest and Stubble Shredding: Performance of Three Corn Header Configurations as Effected by Harvesting Speed and Cutting Height," Agriculture, MDPI, vol. 13(4), pages 1-24, April.
    12. Eva KOCMÁNKOVÁ & Miroslav TRNKA & Zdeněk ŽALUD & Daniela SEMERÁDOVÁ & Martin DUBROVSKÝ & František MUŠKA & Martin MOŽNÝ, 2008. "Comparison of two mapping methods of potential distribution of pests under present and changed climate," Plant Protection Science, Czech Academy of Agricultural Sciences, vol. 44(2), pages 49-56.
    13. Aurambout, J.P. & Finlay, K.J. & Luck, J. & Beattie, G.A.C., 2009. "A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—A means for assessing biosecurity risk," Ecological Modelling, Elsevier, vol. 220(19), pages 2512-2524.
    14. Amiri, Seyedreza & Eyni-Nargeseh, Hamed & Rahimi-Moghaddam, Sajjad & Azizi, Khosro, 2021. "Water use efficiency of chickpea agro-ecosystems will be boosted by positive effects of CO2 and using suitable genotype × environment × management under climate change conditions," Agricultural Water Management, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:57:y:2011:i:6:id:104-2010-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.