IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v95y2013icp83-95.html
   My bibliography  Save this article

Climate change driven shifts in the extent and location of areas suitable for export banana production

Author

Listed:
  • Machovina, Brian
  • Feeley, Kenneth J.

Abstract

Species distribution modeling (SDM) is used to map areas predicted to be suitable for commercial banana production in Central and northwestern South America. Using the downscaled climate projections for 2060 from seven leading global climate models we then predict the geographical shifts in areas suitable for banana production. We repeat this process for conventional and organic banana production. Approximately half of the existing conventional plantations included in the analysis are located in areas predicted to become unsuitable for banana production by 2060. The overall extent of areas suitable for conventional banana cultivation is predicted to decrease by 19%, but all countries are predicted to maintain some suitable areas. The extent of areas suitable for organic banana cultivation is predicted to nearly double due primarily to climatic drying. Several countries (e.g., Colombia and Honduras) are predicted to experience large net decreases in the extent of areas suitable for banana cultivation. Some countries (e.g., Mexico) are predicted to experience large net increases in the extent of suitable areas. The shifts in the location of areas that will be suitable for banana cultivation are predicted to occur mainly within areas outside of protected areas and that are already under agricultural production.

Suggested Citation

  • Machovina, Brian & Feeley, Kenneth J., 2013. "Climate change driven shifts in the extent and location of areas suitable for export banana production," Ecological Economics, Elsevier, vol. 95(C), pages 83-95.
  • Handle: RePEc:eee:ecolec:v:95:y:2013:i:c:p:83-95
    DOI: 10.1016/j.ecolecon.2013.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800913002619
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2013.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    2. Ana Iglesias & Sonia Quiroga & Agustin Diz, 2011. "Looking into the future of agriculture in a changing climate," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 38(3), pages 427-447, August.
    3. Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
    4. Darwin, Roy & Tsigas, Marinos E. & Lewandrowski, Jan & Raneses, Anton, 1995. "World Agriculture and Climate Change: Economic Adaptations," Agricultural Economic Reports 33933, United States Department of Agriculture, Economic Research Service.
    5. Darwin, Roy & Tsigas, Marinos & Lewandrowski, Jan & Raneses, Anton, 1996. "Land use and cover in ecological economics," Ecological Economics, Elsevier, vol. 17(3), pages 157-181, June.
    6. Jan Beck & Andrea Sieber, 2010. "Is the Spatial Distribution of Mankind's Most Basic Economic Traits Determined by Climate and Soil Alone?," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-10, May.
    7. Trnka, M. & Muška, F. & Semerádová, D. & Dubrovský, M. & Kocmánková, E. & Žalud, Z., 2007. "European Corn Borer life stage model: Regional estimates of pest development and spatial distribution under present and future climate," Ecological Modelling, Elsevier, vol. 207(2), pages 61-84.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Sardar Shahraki & Tommaso Caloiero & Ommolbanin Bazrafshan, 2023. "Influence of Climatic Factors on Yields of Pistachio, Mango, and Bananas in Iran," Sustainability, MDPI, vol. 15(11), pages 1-14, June.
    2. Minglu Wang & Bruce A. McCarl, 2021. "Impacts of Climate Change on Livestock Location in the US: A Statistical Analysis," Land, MDPI, vol. 10(11), pages 1-20, November.
    3. Annalisa Marini & Steve McCorriston, 2019. "Weather, Prices and Spillovers," Discussion Papers 1905, University of Exeter, Department of Economics.
    4. Campos, Jean C. & Manrique-Silupú, José & Dorneanu, Bogdan & Ipanaqué, William & Arellano-García, Harvey, 2022. "A smart decision framework for the prediction of thrips incidence in organic banana crops," Ecological Modelling, Elsevier, vol. 473(C).
    5. Vantyghem, Mathilde & Merckx, Roel & Stevens, Bert & Hood-Nowotny, Rebecca & Swennen, Rony & Dercon, Gerd, 2022. "The potential of stable carbon isotope ratios and leaf temperature as proxies for drought stress in banana under field conditions," Agricultural Water Management, Elsevier, vol. 260(C).
    6. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    7. Manners, Rhys & Vandamme, Elke & Adewopo, Julius & Thornton, Philip & Friedmann, Michael & Carpentier, Sebastien & Ezui, Kodjovi Senam & Thiele, Graham, 2021. "Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates," Agricultural Systems, Elsevier, vol. 193(C).
    8. Yen Pham & Kathryn Reardon-Smith & Shahbaz Mushtaq & Geoff Cockfield, 2019. "The impact of climate change and variability on coffee production: a systematic review," Climatic Change, Springer, vol. 156(4), pages 609-630, October.
    9. Hamzeh Ahmadi & Gholamabbas Fallah Ghalhari & Mohammad Baaghideh, 2019. "Impacts of climate change on apple tree cultivation areas in Iran," Climatic Change, Springer, vol. 153(1), pages 91-103, March.
    10. Lauren E. Parker & John T. Abatzoglou, 2018. "Shifts in the thermal niche of almond under climate change," Climatic Change, Springer, vol. 147(1), pages 211-224, March.
    11. Malek, Žiga & Tieskens, Koen F. & Verburg, Peter H., 2019. "Explaining the global spatial distribution of organic crop producers," Agricultural Systems, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ognjen Zurovec & Pål Olav Vedeld & Bishal Kumar Sitaula, 2015. "Agricultural Sector of Bosnia and Herzegovina and Climate Change—Challenges and Opportunities," Agriculture, MDPI, vol. 5(2), pages 1-22, May.
    2. Martinsohn, Maria & Hansen, Heiko, 2012. "The Impact of Climate Change on the Economics of Dairy Farming – a Review and Evaluation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(02), pages 1-16, May.
    3. Martinsohn, Maria & Hansen, Heiko, 2012. "The Impact of Climate Change on the Economics of Dairy Farming – a Review and Evaluation," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61(2).
    4. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    5. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    6. Ruslana Rachel PALATNIK, 2008. "Climate Change Assessment and Agriculture in General Equilibrium Models: Alternative Modeling Strategies," EcoMod2008 23800101, EcoMod.
    7. Trinh, Thoai Quang & Rañola, Roberto F. & Camacho, Leni D. & Simelton, Elisabeth, 2018. "Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam," Land Use Policy, Elsevier, vol. 70(C), pages 224-231.
    8. Paltsev, Sergey & Reilly, John & Tourdyeva, Natalia, 2009. "Russia and the World Energy Markets: Long-term Scenarios," Conference papers 331851, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Ochuodho, Thomas O. & Lantz, Van A. & Olale, Edward, 2016. "Economic impacts of climate change considering individual, additive, and simultaneous changes in forest and agriculture sectors in Canada: A dynamic, multi-regional CGE model analysis," Forest Policy and Economics, Elsevier, vol. 63(C), pages 43-51.
    10. Mathieu Juliot Mpabe Bodjongo, 2022. "Climate Change, Cotton Prices and Production in Cameroon," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(1), pages 22-50, February.
    11. Lewandrowski, J. & Darwin, R. F. & Tsigas, M. & Raneses, A., 1999. "Estimating costs of protecting global ecosystem diversity," Ecological Economics, Elsevier, vol. 29(1), pages 111-125, April.
    12. Ruslana Palatnik & Roberto Roson, 2012. "Climate change and agriculture in computable general equilibrium models: alternative modeling strategies and data needs," Climatic Change, Springer, vol. 112(3), pages 1085-1100, June.
    13. Fernández, Francisco J. & Blanco, Maria, 2014. "Integration of biophysical and agro-economic models to assess the economic effects of climate change on agriculture: A review of global and EU regional approaches," Economics Discussion Papers 2014-48, Kiel Institute for the World Economy (IfW Kiel).
    14. Fernández, Francisco J. & Blanco, Maria, 2015. "Modelling the economic impacts of climate change on global and European agriculture: Review of economic structural approaches," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-53.
    15. Sohngen, Brent & Mendelsohn, Robert & Sedjo, Roger A., 2001. "A Global Model Of Climate Change Impacts On Timber Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-18, December.
    16. Wan-Jiun Chen & Jihn-Fa Jan & Chih-Hsin Chung & Shyue-Cherng Liaw, 2023. "Agriculture Risks and Opportunities in a Climate-Vulnerable Watershed in Northeastern Taiwan—The Opinions of Leisure Agriculture Operators," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    17. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    18. Zouabi, Oussama, 2012. "Changement climatique, agriculture et croissance économique :Une modélisation VAR [Climate Change, Agriculture and Economic Growth: A VAR modeling]," MPRA Paper 61072, University Library of Munich, Germany, revised 2014.
    19. Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 47-73, January.
    20. Pechan, Paul M. & Bohle, Heidi & Obster, Fabian, 2023. "Reducing vulnerability of fruit orchards to climate change," Agricultural Systems, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:95:y:2013:i:c:p:83-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.