Prediction of Pea ( Pisum sativum L.) Seeds Yield Using Artificial Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Uglis, Jarosław & Kozera-Kowalska, Magdalena, 2022. "Financing Streams Of Post-Registration Variety Testing: A Case Study From Poland," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2022(4).
- Abid Ali & Valda Rondelli & Roberta Martelli & Gloria Falsone & Flavio Lupia & Lorenzo Barbanti, 2022. "Management Zones Delineation through Clustering Techniques Based on Soils Traits, NDVI Data, and Multiple Year Crop Yields," Agriculture, MDPI, vol. 12(2), pages 1-20, February.
- Bulent Tugrul & Elhoucine Elfatimi & Recep Eryigit, 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
- Andrzej Wysokinski & Izabela Lozak, 2021. "The Dynamic of Nitrogen Uptake from Different Sources by Pea ( Pisum sativum L.)," Agriculture, MDPI, vol. 11(1), pages 1-14, January.
- Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2022. "Prediction of Protein Content in Pea ( Pisum sativum L.) Seeds Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
- Jian Wang & Haiping Si & Zhao Gao & Lei Shi, 2022. "Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products," Agriculture, MDPI, vol. 12(10), pages 1-13, October.
- Józef Gorzelany & Justyna Belcar & Piotr Kuźniar & Gniewko Niedbała & Katarzyna Pentoś, 2022. "Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning," Agriculture, MDPI, vol. 12(2), pages 1-13, January.
- Mohammad Rokhafrouz & Hooman Latifi & Ali A. Abkar & Tomasz Wojciechowski & Mirosław Czechlowski & Ali Sadeghi Naieni & Yasser Maghsoudi & Gniewko Niedbała, 2021. "Simplified and Hybrid Remote Sensing-Based Delineation of Management Zones for Nitrogen Variable Rate Application in Wheat," Agriculture, MDPI, vol. 11(11), pages 1-24, November.
- Mohamad M. Awad, 2019. "Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
- Gniewko Niedbała & Danuta Kurasiak-Popowska & Kinga Stuper-Szablewska & Jerzy Nawracała, 2020. "Application of Artificial Neural Networks to Analyze the Concentration of Ferulic Acid, Deoxynivalenol, and Nivalenol in Winter Wheat Grain," Agriculture, MDPI, vol. 10(4), pages 1-12, April.
- Abid Nazir & Saleem Ullah & Zulfiqar Ahmad Saqib & Azhar Abbas & Asad Ali & Muhammad Shahid Iqbal & Khalid Hussain & Muhammad Shakir & Munawar Shah & Muhammad Usman Butt, 2021. "Estimation and Forecasting of Rice Yield Using Phenology-Based Algorithm and Linear Regression Model on Sentinel-II Satellite Data," Agriculture, MDPI, vol. 11(10), pages 1-14, October.
- Gniewko Niedbała & Danuta Kurasiak-Popowska & Magdalena Piekutowska & Tomasz Wojciechowski & Michał Kwiatek & Jerzy Nawracała, 2022. "Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean ( Glycine max [L.] Merrill) Cultivar Augusta," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
- Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
- Agnieszka Szparaga & Maciej Kuboń & Sławomir Kocira & Ewa Czerwińska & Anna Pawłowska & Patryk Hara & Zbigniew Kobus & Dariusz Kwaśniewski, 2019. "Towards Sustainable Agriculture—Agronomic and Economic Effects of Biostimulant Use in Common Bean Cultivation," Sustainability, MDPI, vol. 11(17), pages 1-21, August.
- Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhiwei Tian & Ang Gao & Wei Ma & Huanyu Jiang & Dongping Cao & Weizi Wang & Jianping Qian & Lijia Xu, 2024. "Modeling the Mechanical Properties of Root–Substrate Interaction with a Transplanter Using Artificial Neural Networks," Agriculture, MDPI, vol. 14(5), pages 1-12, April.
- Gniewko Niedbała & Sebastian Kujawa, 2023. "Digital Innovations in Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-10, August.
- Jarosław Kurek & Gniewko Niedbała & Tomasz Wojciechowski & Bartosz Świderski & Izabella Antoniuk & Magdalena Piekutowska & Michał Kruk & Krzysztof Bobran, 2023. "Prediction of Potato ( Solanum tuberosum L.) Yield Based on Machine Learning Methods," Agriculture, MDPI, vol. 13(12), pages 1-25, December.
- Aliakbar Mohammadi Mirik & Mahdieh Parsaeian & Abbas Rohani & Shaneka Lawson, 2023. "Optimizing Linseed ( Linum usitatissimum L.) Seed Yield through Agronomic Parameter Modeling via Artificial Neural Networks," Agriculture, MDPI, vol. 14(1), pages 1-21, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gniewko Niedbała & Sebastian Kujawa, 2023. "Digital Innovations in Agriculture," Agriculture, MDPI, vol. 13(9), pages 1-10, August.
- Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2022. "Prediction of Protein Content in Pea ( Pisum sativum L.) Seeds Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
- Jarosław Kurek & Gniewko Niedbała & Tomasz Wojciechowski & Bartosz Świderski & Izabella Antoniuk & Magdalena Piekutowska & Michał Kruk & Krzysztof Bobran, 2023. "Prediction of Potato ( Solanum tuberosum L.) Yield Based on Machine Learning Methods," Agriculture, MDPI, vol. 13(12), pages 1-25, December.
- Gniewko Niedbała & Danuta Kurasiak-Popowska & Magdalena Piekutowska & Tomasz Wojciechowski & Michał Kwiatek & Jerzy Nawracała, 2022. "Application of Artificial Neural Network Sensitivity Analysis to Identify Key Determinants of Harvesting Date and Yield of Soybean ( Glycine max [L.] Merrill) Cultivar Augusta," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
- Shanxin Zhang & Hao Feng & Shaoyu Han & Zhengkai Shi & Haoran Xu & Yang Liu & Haikuan Feng & Chengquan Zhou & Jibo Yue, 2022. "Monitoring of Soybean Maturity Using UAV Remote Sensing and Deep Learning," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
- Gniewko Niedbała & Jarosław Kurek & Bartosz Świderski & Tomasz Wojciechowski & Izabella Antoniuk & Krzysztof Bobran, 2022. "Prediction of Blueberry ( Vaccinium corymbosum L.) Yield Based on Artificial Intelligence Methods," Agriculture, MDPI, vol. 12(12), pages 1-27, December.
- Sebastian C. Ibañez & Christopher P. Monterola, 2023. "A Global Forecasting Approach to Large-Scale Crop Production Prediction with Time Series Transformers," Agriculture, MDPI, vol. 13(9), pages 1-27, September.
- Monika Vilkiene & Ieva Mockeviciene & Grazina Kadziene & Danute Karcauskiene & Regina Repsiene & Ona Auskalniene, 2023. "Bacterial Communities: Interaction to Abiotic Conditions under Effect of Anthropogenic Pressure," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
- Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
- Jian Wang & Haiping Si & Zhao Gao & Lei Shi, 2022. "Winter Wheat Yield Prediction Using an LSTM Model from MODIS LAI Products," Agriculture, MDPI, vol. 12(10), pages 1-13, October.
- Muhammet Fatih Aslan & Kadir Sabanci & Busra Aslan, 2024. "Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
- Ângela Fernandes & Sara Figueiredo & Tiane C. Finimundy & José Pinela & Nikolaos Tzortzakis & Marija Ivanov & Marina Soković & Isabel C. F. R. Ferreira & Spyridon A. Petropoulos & Lillian Barros, 2021. "Chemical Composition and Bioactive Properties of Purple French Bean ( Phaseolus vulgaris L.) as Affected by Water Deficit Irrigation and Biostimulants Application," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
- Niwat Bhumiphan & Jurawan Nontapon & Siwa Kaewplang & Neti Srihanu & Werapong Koedsin & Alfredo Huete, 2023. "Estimation of Rubber Yield Using Sentinel-2 Satellite Data," Sustainability, MDPI, vol. 15(9), pages 1-15, April.
- Hamna Waheed & Waseem Akram & Saif ul Islam & Abdul Hadi & Jalil Boudjadar & Noureen Zafar, 2023. "A Mobile-Based System for Detecting Ginger Leaf Disorders Using Deep Learning," Future Internet, MDPI, vol. 15(3), pages 1-23, February.
- Sławomir Kocira & Patryk Hara & Agnieszka Szparaga & Ewa Czerwińska & Hristo Beloev & Pavol Findura & Peter Bajus, 2020. "Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings," Agriculture, MDPI, vol. 10(4), pages 1-9, March.
- Jie Ding & Cheng Zhang & Xi Cheng & Yi Yue & Guohua Fan & Yunzhi Wu & Youhua Zhang, 2023. "Method for Classifying Apple Leaf Diseases Based on Dual Attention and Multi-Scale Feature Extraction," Agriculture, MDPI, vol. 13(5), pages 1-19, April.
- Christos Vasilakos & George E. Tsekouras & Dimitris Kavroudakis, 2022. "LSTM-Based Prediction of Mediterranean Vegetation Dynamics Using NDVI Time-Series Data," Land, MDPI, vol. 11(6), pages 1-23, June.
- Dorijan Radočaj & Ivan Plaščak & Mladen Jurišić, 2023. "Global Navigation Satellite Systems as State-of-the-Art Solutions in Precision Agriculture: A Review of Studies Indexed in the Web of Science," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
- Wang, Ying & Shi, Wenjuan & Wen, Tianyang, 2023. "Prediction of winter wheat yield and dry matter in North China Plain using machine learning algorithms for optimal water and nitrogen application," Agricultural Water Management, Elsevier, vol. 277(C).
- Mohsen Sabzi-Nojadeh & Gniewko Niedbała & Mehdi Younessi-Hamzekhanlu & Saeid Aharizad & Mohammad Esmaeilpour & Moslem Abdipour & Sebastian Kujawa & Mohsen Niazian, 2021. "Modeling the Essential Oil and Trans -Anethole Yield of Fennel ( Foeniculum vulgare Mill. var. vulgare ) by Application Artificial Neural Network and Multiple Linear Regression Methods," Agriculture, MDPI, vol. 11(12), pages 1-17, November.
More about this item
Keywords
pea; seeds yield prediction; ANN; MLR; sensitivity analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:661-:d:1095075. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.