Application of Artificial Neural Networks to Analyze the Concentration of Ferulic Acid, Deoxynivalenol, and Nivalenol in Winter Wheat Grain
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Piotr Boniecki & Krzysztof Koszela & Krzysztof Świerczyński & Jacek Skwarcz & Maciej Zaborowicz & Jacek Przybył, 2020. "Neural Visual Detection of Grain Weevil ( Sitophilus granarius L.)," Agriculture, MDPI, vol. 10(1), pages 1-9, January.
- Ga-Ae Ryu & Aziz Nasridinov & HyungChul Rah & Kwan-Hee Yoo, 2020. "Forecasts of the Amount Purchase Pork Meat by Using Structured and Unstructured Big Data," Agriculture, MDPI, vol. 10(1), pages 1-14, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2022. "Prediction of Protein Content in Pea ( Pisum sativum L.) Seeds Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(1), pages 1-21, December.
- Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
- Sebastian Kujawa & Gniewko Niedbała, 2021. "Artificial Neural Networks in Agriculture," Agriculture, MDPI, vol. 11(6), pages 1-6, May.
- Katarzyna Szwedziak & Ewa Polańczyk & Żaneta Grzywacz & Gniewko Niedbała & Wiktoria Wojtkiewicz, 2020. "Neural Modeling of the Distribution of Protein, Water and Gluten in Wheat Grains during Storage," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
- Mohsen Niazian & Gniewko Niedbała, 2020. "Machine Learning for Plant Breeding and Biotechnology," Agriculture, MDPI, vol. 10(10), pages 1-23, September.
- Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2023. "Prediction of Pea ( Pisum sativum L.) Seeds Yield Using Artificial Neural Networks," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Piotr Boniecki & Maciej Zaborowicz & Agnieszka Pilarska & Hanna Piekarska-Boniecka, 2020. "Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN," Agriculture, MDPI, vol. 10(6), pages 1-9, June.
- Wuyue An & Lin Wang & Dongfeng Zhang, 2023. "Comprehensive commodity price forecasting framework using text mining methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1865-1888, November.
- Bożena Kordan & Mariusz Nietupski & Emilia Ludwiczak & Beata Gabryś & Robert Cabaj, 2023. "Selected Cultivar-Specific Parameters of Wheat Grain as Factors Influencing Intensity of Development of Grain Weevil Sitophilus granarius (L.)," Agriculture, MDPI, vol. 13(8), pages 1-13, July.
- Andrzej Przybylak & Radosław Kozłowski & Ewa Osuch & Andrzej Osuch & Piotr Rybacki & Przemysław Przygodziński, 2020. "Quality Evaluation of Potato Tubers Using Neural Image Analysis Method," Agriculture, MDPI, vol. 10(4), pages 1-11, April.
- Sebastian Kujawa & Gniewko Niedbała, 2021. "Artificial Neural Networks in Agriculture," Agriculture, MDPI, vol. 11(6), pages 1-6, May.
- Yan Guo & Xiaonan Hu & Zepeng Wang & Wei Tang & Deyu Liu & Yunzhong Luo & Hongxiang Xu, 2021. "The butterfly effect in the price of agricultural products: A multidimensional spatial-temporal association mining," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(11), pages 457-467.
- Tserenpurev Chuluunsaikhan & Ga-Ae Ryu & Kwan-Hee Yoo & HyungChul Rah & Aziz Nasridinov, 2020. "Incorporating Deep Learning and News Topic Modeling for Forecasting Pork Prices: The Case of South Korea," Agriculture, MDPI, vol. 10(11), pages 1-22, October.
More about this item
Keywords
winter wheat; grain; artificial neural network; ferulic acid; deoxynivalenol; nivalenol; MLP network; sensitivity analysis; precision agriculture; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:4:p:127-:d:345254. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.