IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i3p550-d1079371.html
   My bibliography  Save this article

Potential of Brackish Groundwater for Different Biosaline Agriculture Systems in the Brazilian Semi-Arid Region

Author

Listed:
  • Carla Ingryd Nojosa Lessa

    (Agricultural Engineering Department, Federal University of Ceará, Fortaleza 60455-760, Brazil)

  • Claudivan Feitosa de Lacerda

    (Agricultural Engineering Department, Federal University of Ceará, Fortaleza 60455-760, Brazil)

  • Cláudio Cesar de Aguiar Cajazeiras

    (Geological Survey of Brazil-CPRM, Fortaleza 60135-101, Brazil)

  • Antonia Leila Rocha Neves

    (Agricultural Engineering Department, Federal University of Ceará, Fortaleza 60455-760, Brazil)

  • Fernando Bezerra Lopes

    (Agricultural Engineering Department, Federal University of Ceará, Fortaleza 60455-760, Brazil)

  • Alexsandro Oliveira da Silva

    (Agricultural Engineering Department, Federal University of Ceará, Fortaleza 60455-760, Brazil)

  • Henderson Castelo Sousa

    (Agricultural Engineering Department, Federal University of Ceará, Fortaleza 60455-760, Brazil)

  • Hans Raj Gheyi

    (Academic Unit of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58840-000, Brazil)

  • Rafaela da Silva Nogueira

    (Institute of Rural Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-000, Brazil)

  • Silvio Carlos Ribeiro Vieira Lima

    (Secretariat of Economic Development and Labor of the State of Ceará, Fortaleza 60160-230, Brazil)

  • Raimundo Nonato Távora Costa

    (Agricultural Engineering Department, Federal University of Ceará, Fortaleza 60455-760, Brazil)

  • Geocleber Gomes de Sousa

    (Institute of Rural Development, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-000, Brazil)

Abstract

The objective of this research was to define the potential of brackish groundwater for 15 systems of biosaline agriculture in a representative area of the Brazilian semi-arid region. The study was conducted using a database of the State of Ceará, with 6284 wells having brackish water (EC ≥ 0.8 dS m −1 and discharge rate ≥ 0.5 m 3 h −1 ). Our results show that the potential of brackish groundwater resources depends on the set of data: (i) production system (crop salt tolerance and water demand) and (ii) water source (salinity and well discharge rate). The joint analysis of these data shows that plant production systems with lesser water requirements, even with moderate tolerance levels to salt stress, present better results than more tolerant species, including halophytes and coconut orchards. About 41, 43, 58, 69, and 82% of wells have enough discharge rates to irrigate forage cactus (1.0 ha), sorghum (1.0 ha with supplemental irrigation), hydroponic cultivation, cashew seedlings, and coconut seedlings, respectively, without restrictions in terms of salinity. Otherwise, 65.8 and 71.2% of wells do not have enough water yield to irrigate an area of 1.0 ha with halophytes and coconut palm trees, respectively, butmore than 98.3 and 90.7% do not reach the water salinity threshold for these crops. Our study also indicates the need for diversification and use of multiple systems on farms (intercropping, association of fish/shrimp with plants), to reach the sustainability of biosaline agriculture in tropical drylands, especially for family farming.

Suggested Citation

  • Carla Ingryd Nojosa Lessa & Claudivan Feitosa de Lacerda & Cláudio Cesar de Aguiar Cajazeiras & Antonia Leila Rocha Neves & Fernando Bezerra Lopes & Alexsandro Oliveira da Silva & Henderson Castelo So, 2023. "Potential of Brackish Groundwater for Different Biosaline Agriculture Systems in the Brazilian Semi-Arid Region," Agriculture, MDPI, vol. 13(3), pages 1-22, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:550-:d:1079371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/3/550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/3/550/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Gomes Cavalcante Júnior & Marcos Aurélio Vasconcelos Freitas & Neilton Fidelis da Silva & Franklin Rocha de Azevedo Filho, 2019. "Sustainable Groundwater Exploitation Aiming at the Reduction of Water Vulnerability in the Brazilian Semi-Arid Region," Energies, MDPI, vol. 12(5), pages 1-20, March.
    2. Jose Marengo & Mauro Bernasconi, 2015. "Regional differences in aridity/drought conditions over Northeast Brazil: present state and future projections," Climatic Change, Springer, vol. 129(1), pages 103-115, March.
    3. Chauhan, C.P.S. & Singh, R.B. & Gupta, S.K., 2008. "Supplemental irrigation of wheat with saline water," Agricultural Water Management, Elsevier, vol. 95(3), pages 253-258, March.
    4. Allysson Jonhnny Torres Mendonça & André Alisson Rodrigues da Silva & Geovani Soares de Lima & Lauriane Almeida dos Anjos Soares & Valeska Karolini Nunes Oliveira & Hans Raj Gheyi & Claudivan Feitosa , 2022. "Salicylic Acid Modulates Okra Tolerance to Salt Stress in Hydroponic System," Agriculture, MDPI, vol. 12(10), pages 1-24, October.
    5. Sousa Santos, Maria Mayara & Lacerda, Claudivan Feitosa & Rocha Neves, Antonia Leila & de Sousa, Carlos Henrique Carvalho & de Albuquerque Ribeiro, Aureliano & Alves Bezerra, Marlos & da Silva Araújo,, 2020. "Ecophysiology of the tall coconut growing under different coastal areas of northeastern Brazil," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Eduardo Santos Cavalcante & Claudivan Feitosa Lacerda & Rosilene Oliveira Mesquita & Alberto Soares de Melo & Jorge Freire da Silva Ferreira & Adunias dos Santos Teixeira & Silvio Carlos Ribeiro Vieir, 2022. "Supplemental Irrigation with Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize under Tropical Dryland Conditions," Agriculture, MDPI, vol. 12(4), pages 1-15, April.
    7. Jorge F. S. Ferreira & Xuan Liu & Stella Ribeiro Prazeres Suddarth & Christina Nguyen & Devinder Sandhu, 2022. "NaCl Accumulation, Shoot Biomass, Antioxidant Capacity, and Gene Expression of Passiflora edulis f. Flavicarpa Deg. in Response to Irrigation Waters of Moderate to High Salinity," Agriculture, MDPI, vol. 12(11), pages 1-14, November.
    8. Kaburagi, Emi & Yamada, Mina & Baba, Takashi & Fujiyama, Hideyasu & Murillo-Amador, Bernardo & Yamada, Satoshi, 2020. "Aquaponics using saline groundwater: Effect of adding microelements to fish wastewater on the growth of Swiss chard (Beta vulgaris L. spp. cicla)," Agricultural Water Management, Elsevier, vol. 227(C).
    9. Pablo Rugero Magalhães Dourado & Edivan Rodrigues de Souza & Monaliza Alves dos Santos & Cintia Maria Teixeira Lins & Danilo Rodrigues Monteiro & Martha Katharinne Silva Souza Paulino & Bruce Schaffer, 2022. "Stomatal Regulation and Osmotic Adjustment in Sorghum in Response to Salinity," Agriculture, MDPI, vol. 12(5), pages 1-12, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Orlando Nunes da Silva & Luiz Guilherme Medeiros Pessoa & Emanuelle Maria da Silva & Leonardo Raimundo da Silva & Maria Betânia Galvão dos Santos Freire & Eduardo Soares de Souza & Sérgio Luiz Fe, 2023. "Effects of Silicon Alone and Combined with Organic Matter and Trichoderma harzianum on Sorghum Yield, Ions Accumulation and Soil Properties under Saline Irrigation," Agriculture, MDPI, vol. 13(11), pages 1-23, November.
    2. Henderson Castelo Sousa & Geocleber Gomes de Sousa & Thales Vinícius de Araújo Viana & Arthur Prudêncio de Araújo Pereira & Carla Ingryd Nojosa Lessa & Maria Vanessa Pires de Souza & José Marcelo da S, 2023. "Bacillus aryabhattai Mitigates the Effects of Salt and Water Stress on the Agronomic Performance of Maize under an Agroecological System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henderson Castelo Sousa & Geocleber Gomes de Sousa & Thales Vinícius de Araújo Viana & Arthur Prudêncio de Araújo Pereira & Carla Ingryd Nojosa Lessa & Maria Vanessa Pires de Souza & José Marcelo da S, 2023. "Bacillus aryabhattai Mitigates the Effects of Salt and Water Stress on the Agronomic Performance of Maize under an Agroecological System," Agriculture, MDPI, vol. 13(6), pages 1-20, May.
    2. Zemin Zhang & Zhanyu Zhang & Genxiang Feng & Peirong Lu & Mingyi Huang & Xinyu Zhao, 2022. "Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
    3. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    4. Hans Raj Gheyi & Devinder Sandhu & Claudivan Feitosa de Lacerda, 2023. "Fields of the Future: Pivotal Role of Biosaline Agriculture in Farming," Agriculture, MDPI, vol. 13(9), pages 1-5, September.
    5. Paulo Eduardo Teodoro & Luciano de Souza Maria & Jéssica Marciella Almeida Rodrigues & Adriana de Avila e Silva & Maiara Cristina Metzdorf da Silva & Samara Santos de Souza & Fernando Saragosa Rossi &, 2022. "Wildfire Incidence throughout the Brazilian Pantanal Is Driven by Local Climate Rather Than Bovine Stocking Density," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    6. Mercure, J.-F. & Paim, M.A. & Bocquillon, P. & Lindner, S. & Salas, P. & Martinelli, P. & Berchin, I.I. & de Andrade Guerra, J.B.S.O & Derani, C. & de Albuquerque Junior, C.L. & Ribeiro, J.M.P. & Knob, 2019. "System complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 230-243.
    7. Franklin Paredes-Trejo & Humberto Alves Barbosa & Gabriel Antunes Daldegan & Ingrid Teich & César Luis García & T. V. Lakshmi Kumar & Catarina de Oliveira Buriti, 2023. "Impact of Drought on Land Productivity and Degradation in the Brazilian Semiarid Region," Land, MDPI, vol. 12(5), pages 1-19, April.
    8. María del Pino Palacios-Diaz & Juan Ramón Fernández-Vera & Jose Manuel Hernández-Moreno & Regla Amorós & Vanessa Mendoza-Grimón, 2023. "Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde," Agriculture, MDPI, vol. 13(1), pages 1-18, January.
    9. Wang, Lichun & Shi, Jianchu & Zuo, Qiang & Zheng, Wenjuan & Zhu, Xiangming, 2012. "Optimizing parameters of salinity stress reduction function using the relationship between root-water-uptake and root nitrogen mass of winter wheat," Agricultural Water Management, Elsevier, vol. 104(C), pages 142-152.
    10. da Silva, Antonio Samuel Alves & Stosic, Tatijana & Arsenić, Ilija & Menezes, Rômulo Simões Cezar & Stosic, Borko, 2023. "Multifractal analysis of standardized precipitation index in Northeast Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Esmaeil Ahmadi & Benjamin McLellan & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "The Role of Renewable Energy Resources in Sustainability of Water Desalination as a Potential Fresh-Water Source: An Updated Review," Sustainability, MDPI, vol. 12(13), pages 1-31, June.
    12. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    13. Valeska Karolini Nunes Oliveira & André Alisson Rodrigues da Silva & Geovani Soares de Lima & Lauriane Almeida dos Anjos Soares & Hans Raj Gheyi & Claudivan Feitosa de Lacerda & Carlos Alberto Vieira , 2023. "Foliar Application of Salicylic Acid Mitigates Saline Stress on Physiology, Production, and Post-Harvest Quality of Hydroponic Japanese Cucumber," Agriculture, MDPI, vol. 13(2), pages 1-24, February.
    14. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    15. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    16. Eduilson Carneiro & Wilza Lopes & Giovana Espindola, 2021. "Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil," Land, MDPI, vol. 10(5), pages 1-16, May.
    17. Mosaffa, Hamid Reza & Sepaskhah, Ali Reza, 2019. "Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods," Agricultural Water Management, Elsevier, vol. 216(C), pages 444-456.
    18. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    19. Esmaeil Ahmadi & Benjamin McLellan & Seiichi Ogata & Behnam Mohammadi-Ivatloo & Tetsuo Tezuka, 2020. "An Integrated Planning Framework for Sustainable Water and Energy Supply," Sustainability, MDPI, vol. 12(10), pages 1-37, May.
    20. Delazeri, Linda Márcia Mendes & Cunha, Dênis Antônio da & Couto-Santos, Fabiana Rita, 2018. "Climate change and urbanization: evidence from the Semi-Arid region of Brazil," Revista Brasileira de Estudos Regionais e Urbanos, Associação Brasileira de Estudos Regionais e Urbanos (ABER), vol. 12(2), pages 129-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:550-:d:1079371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.