IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i10p1681-d941049.html
   My bibliography  Save this article

Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation

Author

Listed:
  • Zemin Zhang

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Zhanyu Zhang

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Genxiang Feng

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Peirong Lu

    (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China)

  • Mingyi Huang

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China)

  • Xinyu Zhao

    (Business School, Hohai University, Nanjing 210098, China)

Abstract

The freshwater deficit is the major constraint to winter wheat production. Saline water irrigation could alleviate wheat water stress while increasing the risk of soil salinization, which would result in wheat yield reduction due to additional salt stress. The objective of the present study is to explore the effect of a straw-returning mode to promote winter wheat production under saline water irrigation. A field experiment was conducted during the winter wheat growing seasons of 2017–2018 and 2018–2019. Four returning modes were set, based on an equivalent carbon input: straw mulching (SM), biochar amendment (BA), straw mulching combined with biochar amendment (SM+BA), and the control without straw-returning (CK), along with three salinity levels of irrigation water: 0.47 dS m −1 (I0, freshwater), 3.25 dS m −1 (I1), and 6.75 dS m −1 (I2). Saline water irrigation alone triggered soil salt accumulation and reduced the wheat grain yield by 9.43––18.19%. Returning straw to fields increased soil organic carbon content by 16.41––52.21% and decreased soil bulk density by 0.69––1.46%. The highest increase in wheat grain yield (16.60––21.80%) was always obtained when using treatment SM+BA, due to the increased soil moisture content (3.15––12.31%) and lower salt levels (24.79––44.29%) compared to CK. The results of the present study established that SM+BA provided better soil water–salt conditions and nutrient environment for winter wheat growth than a single treatment. Thus, the combined application of SM and BA was shown to be a proper mitigating strategy to cope with the adverse effects of saline irrigation on winter wheat production and to promote the sustainable use of saline water irrigation.

Suggested Citation

  • Zemin Zhang & Zhanyu Zhang & Genxiang Feng & Peirong Lu & Mingyi Huang & Xinyu Zhao, 2022. "Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation," Agriculture, MDPI, vol. 12(10), pages 1-16, October.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1681-:d:941049
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/10/1681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/10/1681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    2. Wang, Xiangping & Yang, Jingsong & Liu, Guangming & Yao, Rongjiang & Yu, Shipeng, 2015. "Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution," Agricultural Water Management, Elsevier, vol. 149(C), pages 44-54.
    3. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    4. Feng, Genxiang & Zhang, Zhanyu & Wan, Changyu & Lu, Peirong & Bakour, Ahmad, 2017. "Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system," Agricultural Water Management, Elsevier, vol. 193(C), pages 205-213.
    5. Chauhan, C.P.S. & Singh, R.B. & Gupta, S.K., 2008. "Supplemental irrigation of wheat with saline water," Agricultural Water Management, Elsevier, vol. 95(3), pages 253-258, March.
    6. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    7. Sun, Guanfang & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Qu, Zhongyi & Mao, Wei & Wu, Jingwei, 2019. "Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area," Agricultural Water Management, Elsevier, vol. 213(C), pages 486-498.
    8. Eduardo Santos Cavalcante & Claudivan Feitosa Lacerda & Rosilene Oliveira Mesquita & Alberto Soares de Melo & Jorge Freire da Silva Ferreira & Adunias dos Santos Teixeira & Silvio Carlos Ribeiro Vieir, 2022. "Supplemental Irrigation with Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize under Tropical Dryland Conditions," Agriculture, MDPI, vol. 12(4), pages 1-15, April.
    9. Qadir, M. & Sharma, B.R. & Bruggeman, A. & Choukr-Allah, R. & Karajeh, F., 2007. "Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries," Agricultural Water Management, Elsevier, vol. 87(1), pages 2-22, January.
    10. Ren, Futian & Yang, Guang & Li, Wanjing & He, Xinlin & Gao, Yongli & Tian, Lijun & Li, Fadong & Wang, Zelin & Liu, Saihua, 2021. "Yield-compatible salinity level for growing cotton (Gossypium hirsutum L.) under mulched drip irrigation using saline water," Agricultural Water Management, Elsevier, vol. 250(C).
    11. Mosaffa, Hamid Reza & Sepaskhah, Ali Reza, 2019. "Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods," Agricultural Water Management, Elsevier, vol. 216(C), pages 444-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Chengfu & Feng, Shaoyuan & Huo, Zailin & Ji, Quanyi, 2019. "Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 424-432.
    2. Tianyu Wang & Zhenghe Xu & Guibin Pang, 2019. "Effects of Irrigating with Brackish Water on Soil Moisture, Soil Salinity, and the Agronomic Response of Winter Wheat in the Yellow River Delta," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    3. Su, Han & Sun, Hongyong & Dong, Xinliang & Chen, Pei & Zhang, Xuejia & Tian, Liu & Liu, Xiaojing & Wang, Jintao, 2021. "Did manure improve saline water irrigation threshold of winter wheat? A 3-year field investigation," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Wang, He & Zheng, Chunlian & Ning, Songrui & Cao, Caiyun & Li, Kejiang & Dang, Hongkai & Wu, Yuqing & Zhang, Junpeng, 2023. "Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation," Agricultural Water Management, Elsevier, vol. 286(C).
    5. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    6. Chen, Yang & Wang, Lu & Tong, Ling & Hao, Xinmei & Wu, Xuanyi & Ding, Risheng & Kang, Shaozhong & Li, Sien, 2023. "Effects of biochar addition and deficit irrigation with brackish water on yield-scaled N2O emissions under drip irrigation with mulching," Agricultural Water Management, Elsevier, vol. 277(C).
    7. Carla Ingryd Nojosa Lessa & Claudivan Feitosa de Lacerda & Cláudio Cesar de Aguiar Cajazeiras & Antonia Leila Rocha Neves & Fernando Bezerra Lopes & Alexsandro Oliveira da Silva & Henderson Castelo So, 2023. "Potential of Brackish Groundwater for Different Biosaline Agriculture Systems in the Brazilian Semi-Arid Region," Agriculture, MDPI, vol. 13(3), pages 1-22, February.
    8. Dong, Xinliang & Wang, Jintao & Zhang, Xuejia & Dang, Hongkai & Singh, Bhupinder Pal & Liu, Xiaojing & Sun, Hongyong, 2022. "Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents," Agricultural Water Management, Elsevier, vol. 270(C).
    9. Liao, Zhenqi & Zhang, Chen & Yu, Shuolei & Lai, Zhenlin & Wang, Haidong & Zhang, Fucang & Li, Zhijun & Wu, Peng & Fan, Junliang, 2023. "Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Yu, Qihua & Kang, Shaozhong & Hu, Shunjun & Zhang, Lu & Zhang, Xiaotao, 2021. "Modeling soil water-salt dynamics and crop response under severely saline condition using WAVES: Searching for a target irrigation volume for saline water irrigation," Agricultural Water Management, Elsevier, vol. 256(C).
    11. Rajesh Kumar Soothar & Wenying Zhang & Binhui Liu & Moussa Tankari & Chao Wang & Li Li & Huanli Xing & Daozhi Gong & Yaosheng Wang, 2019. "Sustaining Yield of Winter Wheat under Alternate Irrigation Using Saline Water at Different Growth Stages: A Case Study in the North China Plain," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    12. Yu, Qihua & Wang, Feng & Zou, Minzhong & Ji, Shasha & Li, Mingfa & Kang, Shaozhong, 2024. "Quantifying the spatial water salinity threshold of saline water irrigation by applying distributed WAVES model," Agricultural Systems, Elsevier, vol. 214(C).
    13. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    15. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    16. Li, Yunfeng & Yu, Qihua & Ning, Huifeng & Gao, Yang & Sun, Jingsheng, 2023. "Simulation of soil water, heat, and salt adsorptive transport under film mulched drip irrigation in an arid saline-alkali area using HYDRUS-2D," Agricultural Water Management, Elsevier, vol. 290(C).
    17. Heidarpour, M. & Mostafazadeh-Fard, B. & Abedi Koupai, J. & Malekian, R., 2007. "The effects of treated wastewater on soil chemical properties using subsurface and surface irrigation methods," Agricultural Water Management, Elsevier, vol. 90(1-2), pages 87-94, May.
    18. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    19. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    20. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:10:p:1681-:d:941049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.