IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v227y2020ics0378377419303701.html
   My bibliography  Save this article

Aquaponics using saline groundwater: Effect of adding microelements to fish wastewater on the growth of Swiss chard (Beta vulgaris L. spp. cicla)

Author

Listed:
  • Kaburagi, Emi
  • Yamada, Mina
  • Baba, Takashi
  • Fujiyama, Hideyasu
  • Murillo-Amador, Bernardo
  • Yamada, Satoshi

Abstract

Saline soil and saline groundwater reduce agricultural productivity on drylands. We are developing a new aquaponics system to improve food productivity on such lands while effectively utilizing saline groundwater. In this study, cultivation of Swiss chard (Beta vulgaris L. spp. cicla cv. Seiyou Shirokuki) was carried out using fish wastewater with a high salt concentration (1150 mg L−1 NaCl). The levels of microelements (e.g., Fe, Mn, Zn, and Cu) in the fish wastewater were very low, so we added microelements at 100% (W100), 50% (W50), 25% (W25), and 0% (W0) of the levels in the standard hydroponics solution to the fish wastewater and investigated the effects on growth of Swiss chard. At the first harvest, yields in all wastewater treatments were as high or higher than in the control. At the second harvest, yields in W100, W50, and W25 were not significantly different from the control, while in W0 the yield was significantly lower and chlorosis was evident. At the third harvest, the yield in all wastewater treatments was less than in the control, and chlorosis symptoms were observed in W25 and W0. Since leaf Mn and Zn concentrations in W25 and W0 had decreased to below the critical values for those microelements, Mn and Zn deficiency might have contributed to the observed chlorosis and yield loss. For the cultivation of Swiss chard with fish wastewater, sufficient yield (i.e., comparable to or better than the control) without chlorosis was obtained when microelements were added at 50% of the level of the control solution. In addition, since sufficient yield was obtained even in W0 at the first harvest, it is suggested that longer-term cultivation and higher yield could be achieved by applying 50% microelements after the first harvest.

Suggested Citation

  • Kaburagi, Emi & Yamada, Mina & Baba, Takashi & Fujiyama, Hideyasu & Murillo-Amador, Bernardo & Yamada, Satoshi, 2020. "Aquaponics using saline groundwater: Effect of adding microelements to fish wastewater on the growth of Swiss chard (Beta vulgaris L. spp. cicla)," Agricultural Water Management, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419303701
    DOI: 10.1016/j.agwat.2019.105851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419303701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Goddek & Boris Delaide & Utra Mankasingh & Kristin Vala Ragnarsdottir & Haissam Jijakli & Ragnheidur Thorarinsdottir, 2015. "Challenges of Sustainable and Commercial Aquaponics," Sustainability, MDPI, vol. 7(4), pages 1-26, April.
    2. Jianping Huang & Haipeng Yu & Xiaodan Guan & Guoyin Wang & Ruixia Guo, 2016. "Accelerated dryland expansion under climate change," Nature Climate Change, Nature, vol. 6(2), pages 166-171, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awais Ali & Genhua Niu & Joseph Masabni & Antonio Ferrante & Giacomo Cocetta, 2024. "Integrated Nutrient Management of Fruits, Vegetables, and Crops through the Use of Biostimulants, Soilless Cultivation, and Traditional and Modern Approaches—A Mini Review," Agriculture, MDPI, vol. 14(8), pages 1-28, August.
    2. Carla Ingryd Nojosa Lessa & Claudivan Feitosa de Lacerda & Cláudio Cesar de Aguiar Cajazeiras & Antonia Leila Rocha Neves & Fernando Bezerra Lopes & Alexsandro Oliveira da Silva & Henderson Castelo So, 2023. "Potential of Brackish Groundwater for Different Biosaline Agriculture Systems in the Brazilian Semi-Arid Region," Agriculture, MDPI, vol. 13(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quevedo Cascante, Mónica & Acosta García, Nicolás & Fold, Niels, 2022. "The role of external forces in the adoption of aquaculture innovations: An ex-ante case study of fish farming in Colombia's southern Amazonian region," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Nurhayati Br Tarigan & Simon Goddek & Karel J. Keesman, 2021. "Explorative Study of Aquaponics Systems in Indonesia," Sustainability, MDPI, vol. 13(22), pages 1-26, November.
    3. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    4. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Abid, Nabila & Ahmad, Fayyaz & Aftab, Junaid & Razzaq, Asif, 2023. "A blessing or a burden? Assessing the impact of Climate Change Mitigation efforts in Europe using Quantile Regression Models," Energy Policy, Elsevier, vol. 178(C).
    6. Khalifa, Sherin & Henning, Christian H. C. A., 2020. "Climate change and civil conflict in SSA and MENA: The same phenomena, but different mechanisms?," Working Papers of Agricultural Policy WP2020-03, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    7. Lenka Lackóová & Tatiana Kaletová & Klaudia Halászová, 2023. "Are Drought and Wind Force Driving Factors of Wind Erosion Climatic Erosivity in a Changing Climate? A Case Study in a Landlocked Country in Central Europe," Land, MDPI, vol. 12(4), pages 1-18, March.
    8. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Ramin Ghamkhar & Christopher Hartleb & Zack Rabas & Andrea Hicks, 2022. "Evaluation of environmental and economic implications of a cold‐weather aquaponic food production system using life cycle assessment and economic analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 862-874, June.
    11. Juan F. Fernández-Manjarrés & Paloma Ruiz-Benito & Miguel A. Zavala & J. Julio Camarero & Fernando Pulido & Vânia Proença & Laetitia Navarro & Roxane Sansilvestri & Elena Granda & Laura Marqués & Mart, 2018. "Forest Adaptation to Climate Change along Steep Ecological Gradients: The Case of the Mediterranean-Temperate Transition in South-Western Europe," Sustainability, MDPI, vol. 10(9), pages 1-18, August.
    12. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    13. Bateer Baiyin & Kotaro Tagawa & Joaquin Gutierrez, 2020. "Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    14. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Iwona Gottfried & Tomasz Gottfried & Grzegorz Lesiński & Grzegorz Hebda & Maurycy Ignaczak & Grzegorz Wojtaszyn & Mirosław Jurczyszyn & Maciej Fuszara & Elżbieta Fuszara & Witold Grzywiński & Grzegorz, 2020. "Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change – Are current monitoring schemes still reliable for cryophilic bat species?," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    16. Zhaoxia Ye & Aihong Fu & Shuhua Zhang & Yuhai Yang, 2020. "Suitable Scale of an Oasis in Different Scenarios in an Arid Region of China: A Case Study of the Ejina Oasis," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    17. Malpede, Maurizio & Percoco, Marco, 2024. "The long-term economic effects of aridification," Ecological Economics, Elsevier, vol. 217(C).
    18. Azhar M. Memon & Luai M. AlHems & Sevim Seda Yamaç & Muhammad S. Barry & Aftab Alam & Ahmed AlMuhanna, 2022. "Aquaponics in Saudi Arabia: Initial Steps towards Addressing Food Security in the Arid Region," Agriculture, MDPI, vol. 12(12), pages 1-15, December.
    19. Qifei Zhang & Yaning Chen & Zhi Li & Congjian Sun & Yanyun Xiang & Zhihui Liu, 2023. "Spatio-Temporal Development of Vegetation Carbon Sinks and Sources in the Arid Region of Northwest China," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    20. Zhang, Xucheng & Wang, Hongli & Hou, Huizhi & Yu, Xianfeng & Ma, Yifan & Fang, Yanjie & Lei, Kangning, 2020. "Did plastic mulching constantly increase crop yield but decrease soil water in a semiarid rain-fed area?," Agricultural Water Management, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419303701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.