IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i2p232-d1330264.html
   My bibliography  Save this article

Climate Change Effects on Texas Dryland Winter Wheat Yields

Author

Listed:
  • Cori Salinas

    (Division of Agribusiness and Agricultural Economics, Department of Agricultural and Consumer Sciences, Tarleton State University, P.O. Box T-0040, Stephenville, TX 76402, USA)

  • Edward Osei

    (Division of Agribusiness and Agricultural Economics, Department of Agricultural and Consumer Sciences, Tarleton State University, P.O. Box T-0040, Stephenville, TX 76402, USA)

  • Mark Yu

    (Division of Agribusiness and Agricultural Economics, Department of Agricultural and Consumer Sciences, Tarleton State University, P.O. Box T-0040, Stephenville, TX 76402, USA)

  • Selin Guney

    (Division of Agribusiness and Agricultural Economics, Department of Agricultural and Consumer Sciences, Tarleton State University, P.O. Box T-0040, Stephenville, TX 76402, USA)

  • Ashley Lovell

    (Division of Agribusiness and Agricultural Economics, Department of Agricultural and Consumer Sciences, Tarleton State University, P.O. Box T-0040, Stephenville, TX 76402, USA)

  • Eunsung Kan

    (Texas A&M AgriLife Research, Stephenville, TX 76401, USA)

Abstract

Wheat offers winter forage for cattle grazing and is one of the most valuable cash crops in Texas. In this study, we evaluate the impacts of climate change projections on winter wheat grain yields in five major wheat producing counties in Texas (Deaf Smith, Ochiltree, Hansford, Moore, and Parmer). For this purpose, extant soil and climate data were utilized in conjunction with Agricultural Policy Environmental eXtender (APEX) and Coupled Model Intercomparison Project—Phase 5 (CMIP 5) climate projections to determine the most reasonable future trajectory of Texas winter wheat yields. The results indicate that Deaf Smith and Parmer counties are projected to experience the greatest yield decrease, 33.33%, about 696 kg/ha under the CMIP5 RCP4.5 (Texas projected temperature increase between 2.2 and 3.3 °C) 2046–2070 scenario compared to a 1981–2017 baseline. The maximum percentage yield increase was noticed in Ochiltree County under the CMIP5 RCP8.5 2071–2095 scenario, with an 84.2% (about 1857 kg/ha) yield increase compared to the 1981–2017 baseline. Parmer County is projected to experience the greatest yield decrease of 20%, about 348 kg/ha, under the RCP4.5 2046–2070 scenario when compared to the 1981–2005 baseline. The maximum percentage yield increase is projected for Ochiltree County—a 105.9% increase, about 2089 kg/ha—under the RCP8.5 2071–2095 scenario when compared to the 1981–2005 baseline. In general, with few exceptions, winter wheat yields are projected to rise under the projected climate scenarios.

Suggested Citation

  • Cori Salinas & Edward Osei & Mark Yu & Selin Guney & Ashley Lovell & Eunsung Kan, 2024. "Climate Change Effects on Texas Dryland Winter Wheat Yields," Agriculture, MDPI, vol. 14(2), pages 1-17, January.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:232-:d:1330264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/2/232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/2/232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talebizadeh, Mansour & Moriasi, Daniel & Gowda, Prasanna & Steiner, Jean L. & Tadesse, Haile K. & Nelson, Amanda M. & Starks, Patrick, 2018. "Simultaneous calibration of evapotranspiration and crop yield in agronomic system modeling using the APEX model," Agricultural Water Management, Elsevier, vol. 208(C), pages 299-306.
    2. Edward Osei & Syed H. Jafri & Ali Saleh & Philip W. Gassman & Oscar Gallego, 2023. "Simulated Climate Change Impacts on Corn and Soybean Yields in Buchanan County, Iowa," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    3. Luo, Yao & Wang, Hongya, 2019. "Modeling the impacts of agricultural management strategies on crop yields and sediment yields using APEX in Guizhou Plateau, southwest China," Agricultural Water Management, Elsevier, vol. 216(C), pages 325-338.
    4. Kothari, Kritika & Ale, Srinivasulu & Attia, Ahmed & Rajan, Nithya & Xue, Qingwu & Munster, Clyde L., 2019. "Potential climate change adaptation strategies for winter wheat production in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jie & Zhang, Xuepeng & Yang, Yadong & Zang, Huadong & Yan, Peng & Meki, Manyowa N. & Doro, Luca & Sui, Peng & Jeong, Jaehak & Zeng, Zhaohai, 2021. "Alternative cropping systems for groundwater irrigation sustainability in the North China Plain," Agricultural Water Management, Elsevier, vol. 250(C).
    2. Attia, Ahmed & El-Hendawy, Salah & Al-Suhaibani, Nasser & Alotaibi, Majed & Tahir, Muhammad Usman & Kamal, Khaled Y., 2021. "Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation," Agricultural Water Management, Elsevier, vol. 249(C).
    3. Ramazan Çakmakçı & Mehmet Ali Salık & Songül Çakmakçı, 2023. "Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    4. Kim, Dong-Hyeon & Jang, Taeil & Hwang, Syewoon & Jeong, Hanseok, 2021. "Paddy rice adaptation strategies to climate change: Transplanting date shift and BMP applications," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Ivan Malashin & Vadim Tynchenko & Andrei Gantimurov & Vladimir Nelyub & Aleksei Borodulin & Yadviga Tynchenko, 2024. "Predicting Sustainable Crop Yields: Deep Learning and Explainable AI Tools," Sustainability, MDPI, vol. 16(21), pages 1-29, October.
    6. Hou, Xiaoning & Xu, Zan & Tang, Caihong & Zhang, Shanghong, 2021. "Spatial distributions of nitrogen and phosphorus losses in a basin and responses to best management practices — Jialing River Basin case study," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Edward Osei & Syed H. Jafri & Philip W. Gassman & Ali Saleh, 2023. "Simulated Ecosystem and Farm-Level Economic Impacts of Conservation Tillage in a Northeastern Iowa County," Agriculture, MDPI, vol. 13(4), pages 1-22, April.
    8. Zitouna-Chebbi, Rim & Jacob, Frédéric & Prévot, Laurent & Voltz, Marc, 2023. "Documenting evapotranspiration and surface energy fluxes over rainfed annual crops within a Mediterranean hilly agrosystem," Agricultural Water Management, Elsevier, vol. 277(C).
    9. Wenwen Feng & Chao Wang & Xiaohui Lei & Hao Wang & Xueliang Zhang, 2020. "Distribution of Nitrate Content in Groundwater and Evaluation of Potential Health Risks: A Case Study of Rural Areas in Northern China," IJERPH, MDPI, vol. 17(24), pages 1-14, December.
    10. Quezada Lambertin, Carlos Eduardo, 2021. "Adaptación a los impactos del cambio climático de sistemas agrícolas basados en papa del altiplano boliviano," Documentos de trabajo 6/2021, Instituto de Investigaciones Socio-Económicas (IISEC), Universidad Católica Boliviana.
    11. Edward Osei & Syed H. Jafri & Philip W. Gassman & Ali Saleh & Oscar Gallego, 2023. "Climate Change Impacts on Surface Runoff and Nutrient and Sediment Losses in Buchanan County, Iowa," Agriculture, MDPI, vol. 13(2), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:2:p:232-:d:1330264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.