IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v256y2021ics0378377421003917.html
   My bibliography  Save this article

Modeling environmental impact in a semi-arid intensive irrigated watershed

Author

Listed:
  • Dechmi, Farida
  • Skhiri, Ahmed
  • Isidoro, Daniel

Abstract

Improving on-field farmers’ management skills is imperative for an economically and environmentally sustainable irrigated agriculture in semi-arid areas where the quality of the irrigation return flow (IRF) is mainly affected by excessive fertilization and surplus irrigation water. The SWAT model is used worldwide for environmental impact assessment, however, previous versions were unable to simulate appropriately the hydrological processes in irrigated areas. The objectives of this study were to assess the change preformed in SWAT2018 manual irrigation algorithms and to evaluate the impact of the optimum irrigation and nitrogen management practices on crop yield, irrigation return flows and nitrate load in Del Reguero watershed (Spain) after model calibration and validation. The irrigation algorithm in the SWAT2018 source code did not include the irrigation application efficiency in the net irrigation dose calculation, which is very important in irrigated systems. The streamflow calibration and validation resulting statistics for daily and monthly streamflow indicate a “very good” model performance (NSE = 0.75–0.87). The monthly NO3-N load calibration and validation results indicated ‘‘very good’’ (NSE = 0.83 and PBIAS = 4.7%) and ‘‘satisfactory’ ’to ‘‘very good’’ (NSE = 0.64 and PBIAS = 9.36%) performance, respectively. Scenarios assessment showed that combined recommended N fertilization and optimum irrigation were advantageous both for the environment and farmers’ benefits rather than individual scenarios for reaching maximum reduction in NO3-N loads (52%) with better net incomes for farmers (27% yield increase and 26% less N fertilizers inputs), and irrigation water saving (21%) which leads to savings in energy costs. On the one hand, this study allowed for building a more reliable and suitable SWAT model for use in intensive irrigation watersheds, while on the other hand, it supports and reinforces previous results performed in other pressurized irrigated areas for better farmer acceptance and adoption.

Suggested Citation

  • Dechmi, Farida & Skhiri, Ahmed & Isidoro, Daniel, 2021. "Modeling environmental impact in a semi-arid intensive irrigated watershed," Agricultural Water Management, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003917
    DOI: 10.1016/j.agwat.2021.107115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421003917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lecina, S. & Playan, E. & Isidoro, D. & Dechmi, F. & Causape, J. & Faci, J.M., 2005. "Irrigation evaluation and simulation at the Irrigation District V of Bardenas (Spain)," Agricultural Water Management, Elsevier, vol. 73(3), pages 223-245, May.
    2. Malik, Wafa & Dechmi, Farida, 2019. "DSSAT modelling for best irrigation management practices assessment under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 27-43.
    3. Isidoro, D. & Quilez, D. & Aragues, R., 2004. "Water balance and irrigation performance analysis: La Violada irrigation district (Spain) as a case study," Agricultural Water Management, Elsevier, vol. 64(2), pages 123-142, January.
    4. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    5. Dechmi, F. & Playan, E. & Faci, J. M. & Tejero, M., 2003. "Analysis of an irrigation district in northeastern Spain: I. Characterisation and water use assessment," Agricultural Water Management, Elsevier, vol. 61(2), pages 75-92, June.
    6. Dechmi, F. & Skhiri, A., 2013. "Evaluation of best management practices under intensive irrigation using SWAT model," Agricultural Water Management, Elsevier, vol. 123(C), pages 55-64.
    7. Victoria, F.B. & Filho, J.S. Viegas & Pereira, L.S. & Teixeira, J.L. & Lanna, A.E., 2005. "Multi-scale modeling for water resources planning and management in rural basins," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 4-20, August.
    8. Ahmadzadeh, Hojat & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2016. "Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment," Agricultural Water Management, Elsevier, vol. 175(C), pages 15-28.
    9. Wallace, Carlington W. & Flanagan, Dennis C. & Engel, Bernard A., 2017. "Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 51-65.
    10. Dechmi, F. & Playan, E. & Faci, J. M. & Tejero, M. & Bercero, A., 2003. "Analysis of an irrigation district in northeastern Spain: II. Irrigation evaluation, simulation and scheduling," Agricultural Water Management, Elsevier, vol. 61(2), pages 93-109, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    2. Malik, Wafa & Dechmi, Farida, 2019. "DSSAT modelling for best irrigation management practices assessment under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 27-43.
    3. Lecina, S. & Isidoro, D. & Playán, E. & Aragüés, R., 2010. "Irrigation modernization and water conservation in Spain: The case of Riegos del Alto Aragón," Agricultural Water Management, Elsevier, vol. 97(10), pages 1663-1675, October.
    4. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada Irrigation District (Spain): II. Analysis of irrigation performance," Agricultural Water Management, Elsevier, vol. 98(10), pages 1569-1576, August.
    5. Andrés, R. & Cuchí, J.A., 2014. "Analysis of sprinkler irrigation management in the LASESA district, Monegros (Spain)," Agricultural Water Management, Elsevier, vol. 131(C), pages 95-107.
    6. Lecina, S. & Neale, C.M.U. & Merkley, G.P. & Dos Santos, C.A.C., 2011. "Irrigation evaluation based on performance analysis and water accounting at the Bear River Irrigation Project (U.S.A.)," Agricultural Water Management, Elsevier, vol. 98(9), pages 1349-1363, July.
    7. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    8. Franco-Luesma, Samuel & Álvaro-Fuentes, Jorge & Plaza-Bonilla, Daniel & Arrúe, José Luis & Cantero-Martínez, Carlos & Cavero, José, 2019. "Influence of irrigation time and frequency on greenhouse gas emissions in a solid-set sprinkler-irrigated maize under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 221(C), pages 303-311.
    9. Lecina, S. & Playan, E. & Isidoro, D. & Dechmi, F. & Causape, J. & Faci, J.M., 2005. "Irrigation evaluation and simulation at the Irrigation District V of Bardenas (Spain)," Agricultural Water Management, Elsevier, vol. 73(3), pages 223-245, May.
    10. Playan, E. & Cavero, J. & Mantero, I. & Salvador, R. & Lecina, S. & Faci, J.M. & Andres, J. & Salvador, V. & Cardena, G. & Ramon, S. & Lacueva, J.L. & Tejero, M. & Ferri, J. & Martinez-Cob, A., 2007. "A database program for enhancing irrigation district management in the Ebro Valley (Spain)," Agricultural Water Management, Elsevier, vol. 87(2), pages 209-216, January.
    11. Ghimire, Chandra Prasad & Bradley, Stuart & Ritchie, Willis & Appels, Willemijn M. & Grundy, Laura & Snow, Val, 2022. "Towards quantifying plot-scale overland flow connectivity using acoustic proximal remote sensing," Agricultural Water Management, Elsevier, vol. 262(C).
    12. Fernandez, M.D. & Gonzalez, A.M. & Carreno, J. & Perez, C. & Bonachela, S., 2007. "Analysis of on-farm irrigation performance in Mediterranean greenhouses," Agricultural Water Management, Elsevier, vol. 89(3), pages 251-260, May.
    13. Stambouli, T. & Faci, J.M. & Zapata, N., 2014. "Water and energy management in an automated irrigation district," Agricultural Water Management, Elsevier, vol. 142(C), pages 66-76.
    14. Ján Jobbágy & Koloman Krištof, 2018. "Evaluation of the coefficient of uniformity and non-uniformity of irrigation for wide-range irrigators in various field conditions," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 64(2), pages 55-62.
    15. Chopart, J.L. & Mezino, M. & Aure, F. & Le Mezo, L. & Mete, M. & Vauclin, M., 2007. "OSIRI: A simple decision-making tool for monitoring irrigation of small farms in heterogeneous environments," Agricultural Water Management, Elsevier, vol. 87(2), pages 128-138, January.
    16. Ge, Maosheng & Wu, Pute & Zhu, Delan & Zhang, Lin & Cai, Yaohui, 2020. "Optimized configuration of a hose reel traveling irrigator," Agricultural Water Management, Elsevier, vol. 240(C).
    17. Playán, Enrique & Zapata, Nery & Latorre, Borja & Cavero, José & Paniagua, Piluca & Medina, Eva T. & Lorenzo, María Angeles & Burguete, Javier, 2024. "Ador-Solid-Set: A coupled simulation model for commercial solid-set irrigated fields," Agricultural Water Management, Elsevier, vol. 295(C).
    18. Salvador, R. & Martínez-Cob, A. & Cavero, J. & Playán, E., 2011. "Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation systems," Agricultural Water Management, Elsevier, vol. 98(4), pages 577-587, February.
    19. Abrahao, R. & Causapé, J. & García-Garizábal, I. & Merchán, D., 2011. "Implementing irrigation: Water balances and irrigation quality in the Lerma basin (Spain)," Agricultural Water Management, Elsevier, vol. 102(1), pages 97-104.
    20. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.