IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i2p387-d1059632.html
   My bibliography  Save this article

Experimental and Numerical Simulations of a Solar Air Heater for Maximal Value Addition to Agricultural Products

Author

Listed:
  • Zuhair Qamar

    (Department of Farm Machinery & Power, University of Agriculture Faisalabad, Punjab 38000, Pakistan)

  • Anjum Munir

    (Department of Energy Systems Engineering, University of Agriculture Faisalabad, Punjab 38000, Pakistan)

  • Timothy Langrish

    (School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, NSW 2006, Australia)

  • Abdul Ghafoor

    (Department of Farm Machinery & Power, University of Agriculture Faisalabad, Punjab 38000, Pakistan)

  • Muhammad Tahir

    (Department of Agronomy, University of Agriculture Faisalabad, Punjab 38000, Pakistan)

Abstract

Agriculture is the backbone of Pakistan’s economy. Currently, the agricultural sector is facing many challenges, especially post-harvest losses, which result in lower yield and profitability. These losses may be reduced by developing indigenous post-harvest processing technologies, such as drying out of agricultural products to enhancement of their sustainability and reduce transportation costs. The country has the advantage of an abundant amount of solar insulation, which can be effectively utilized to operate post-harvest machinery, particularly solar heaters and dryers. Currently, conventional solar heaters face challenges due to lower efficiencies. Therefore, in this study, a solar air heater (SAH), having a size 1220 × 610 × 65 mm, was designed and developed to be connected to a milk powder spray drying system for converting raw milk to powder. Computational fluid dynamics (CFD) were used to anticipate air flow and temperature distribution across the SAH to evaluate optimal performance parameters. An air mass flow rate of 0.01 kgs −1 was required, with the CFD predicting an outlet temperature of 82 °C compared with the experimental observation of 73 °C. The pressure drop across the SAH was recorded to be 0.0000434 bar at this flow rate, which is negligible, with the SAH operating near ambient pressure. The overall heat loss coefficient for convection was 2.27 W. m −2 ·K −1 . The energy losses from the SAH were 37% and the useful energy was 63% of the total energy provided to the SAH. The breakeven point of SAH at a minimum of 4 h of daily usage was 3700 h or 2.5 years. The solar air heater used as a preheater for a spray dryer can save 30 PKR·kWh −1 of energy.

Suggested Citation

  • Zuhair Qamar & Anjum Munir & Timothy Langrish & Abdul Ghafoor & Muhammad Tahir, 2023. "Experimental and Numerical Simulations of a Solar Air Heater for Maximal Value Addition to Agricultural Products," Agriculture, MDPI, vol. 13(2), pages 1-17, February.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:387-:d:1059632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/2/387/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/2/387/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luminosu, I. & Fara, L., 2005. "Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation," Energy, Elsevier, vol. 30(5), pages 731-747.
    2. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    3. Said, Zafar & Ghodbane, Mokhtar & Sundar, L. Syam & Tiwari, Arun Kumar & Sheikholeslami, Mohsen & Boumeddane, Boussad, 2021. "Heat transfer, entropy generation, economic and environmental analyses of linear fresnel reflector using novel rGO-Co3O4 hybrid nanofluids," Renewable Energy, Elsevier, vol. 165(P1), pages 420-437.
    4. Yang, Ming & Yang, Xudong & Li, Xing & Wang, Zhifeng & Wang, Pengsu, 2014. "Design and optimization of a solar air heater with offset strip fin absorber plate," Applied Energy, Elsevier, vol. 113(C), pages 1349-1362.
    5. Kessentini, Hamdi & Bouden, Chiheb, 2013. "Numerical and experimental study of an integrated solar collector with CPC reflectors," Renewable Energy, Elsevier, vol. 57(C), pages 577-586.
    6. Abdus Sattar, 2022. "What is Holding Back Milk Production Potential in Pakistan?," PIDE Knowledge Brief 2022:61, Pakistan Institute of Development Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Wandong & Zhang, Huan & You, Shijun & Fu, Yindan & Zheng, Xuejing, 2017. "Thermal performance analysis of a metal corrugated packing solar air collector in cold regions," Applied Energy, Elsevier, vol. 203(C), pages 938-947.
    2. Verma, Sujit Kumar & Sharma, Kamal & Gupta, Naveen Kumar & Soni, Pawan & Upadhyay, Neeraj, 2020. "“Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector”," Energy, Elsevier, vol. 194(C).
    3. Cruz-Peragon, F. & Palomar, J.M. & Casanova, P.J. & Dorado, M.P. & Manzano-Agugliaro, F., 2012. "Characterization of solar flat plate collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1709-1720.
    4. Imtiaz Hussain, M. & Lee, Gwi Hyun & Kim, Jun-Tae, 2017. "Experimental validation of mathematical models of identical aluminum and stainless steel engineered conical solar collectors," Renewable Energy, Elsevier, vol. 112(C), pages 44-52.
    5. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, Puthuveettil Sreedharan, 2017. "Exergy and energy analysis of a novel type solar collector under steady state condition: Experimental and CFD analysis," Renewable Energy, Elsevier, vol. 114(PB), pages 655-669.
    6. Murat Kunelbayev & Yedilkhan Amirgaliyev & Talgat Sundetov, 2022. "Improving the Efficiency of Environmental Temperature Control in Homes and Buildings," Energies, MDPI, vol. 15(23), pages 1-15, November.
    7. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    9. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Devanarayanan, K. & Kalidasa Murugavel, K., 2014. "Integrated collector storage solar water heater with compound parabolic concentrator – development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 51-64.
    11. Alvarez, A. & Cabeza, O. & Muñiz, M.C. & Varela, L.M., 2010. "Experimental and numerical investigation of a flat-plate solar collector," Energy, Elsevier, vol. 35(9), pages 3707-3716.
    12. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2012. "A review on energy and exergy analysis of solar dying systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2812-2819.
    13. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    14. Farahat, S. & Sarhaddi, F. & Ajam, H., 2009. "Exergetic optimization of flat plate solar collectors," Renewable Energy, Elsevier, vol. 34(4), pages 1169-1174.
    15. Kareem, M.W. & Habib, Khairul & Pasha, Amjad A. & Irshad, Kashif & Afolabi, L.O. & Saha, Bidyut Baran, 2022. "Experimental study of multi-pass solar air thermal collector system assisted with sensible energy-storing matrix," Energy, Elsevier, vol. 245(C).
    16. R. M. Mostafizur & M. G. Rasul & M. N. Nabi, 2021. "Energy and Exergy Analyses of a Flat Plate Solar Collector Using Various Nanofluids: An Analytical Approach," Energies, MDPI, vol. 14(14), pages 1-19, July.
    17. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    18. Barbosa, Eloiny Guimarães & Araujo, Marcos Eduardo Viana de & Lopes, Roberto Precci & Martins, Marcio Arêdes & Moraes, Maria Joselma de & Barbosa, Elisa Guimarães & Falconí, Javier Hernán Heredia, 2020. "Exergetic, economic and environmental (3E) analysis of a low cost solar heater in different configurations," Renewable Energy, Elsevier, vol. 160(C), pages 1096-1104.
    19. Imtiaz Hussain, M. & Lee, Gwi Hyun, 2017. "Numerical and experimental heat transfer analyses of a novel concentric tube absorber under non-uniform solar flux condition," Renewable Energy, Elsevier, vol. 103(C), pages 49-57.
    20. Torío, H. & Schmidt, D., 2010. "Framework for analysis of solar energy systems in the built environment from an exergy perspective," Renewable Energy, Elsevier, vol. 35(12), pages 2689-2697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:387-:d:1059632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.